Skip header and navigation

Refine Results By

307 records – page 1 of 16.

Fire Performance of Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2824
Year of Publication
2021
Topic
Fire
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Dagenais, Christian
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Resistance
CSA 086
National Design Specifications for Wood Construction (NDSR)
Fire Test
Fire Stopping
Connections
Insurance
Mass Timber
Language
English
Research Status
Complete
Series
InfoNote
Summary
This InfoNote summarizes recent research and work in progress. A significant amount of fire research has been conducted on mass timber over the last 10 years in Canada. This has supported the successful design and construction of numerous low-, mid-and even high-rise wood buildings. This has also fostered the introduction of new provisions into the National Building Code of Canada which has made wood and mass timber construction more accessible. However, the fire performance of these systems remains a concern for many potential occupants or owners of these buildings, not to mention building officials and fire departments. Research at FPInnovations continues to support designers and builders in the use of mass timber assemblies by ensuring fire safe designs.
Online Access
Free
Resource Link
Less detail

Advancing Knowledge of Mid-ply Shear Walls: Mid-Ply Shear Wall Fire Resistance Testing

https://research.thinkwood.com/en/permalink/catalogue2808
Year of Publication
2021
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Fire
Keywords
Shear Walls
Fire Resistance Rating
Mid-Rise
Midply Wall
Language
English
Research Status
Complete
Summary
The objective of this research is to address a knowledge gap related to fire performance of midply shear walls. Testing has already been done to establish the structural performance of these assemblies. To ensure their safe implementation and their broad acceptance, this project will establish fire resistance ratings for midply shear walls. Fire tests will provide information for the development of design considerations for midply shear walls and confirm that they can achieve at least 1-hour fire-resistance ratings that are required for use in mid-rise buildings. This research will support greater adoption of mid-rise residential and non-residential wood-frame construction and improve competition with similar buildings of noncombustible construction. This work will also support the development of the APA system report for midply walls, which will be a design guideline for using midply walls in North America.
Online Access
Free
Resource Link
Less detail

Enhancing Thermal and Mechanical Performance of Engineered Wood Product Adhesives using Novel Fire Retardant Nanoclays

https://research.thinkwood.com/en/permalink/catalogue2810
Year of Publication
2021
Topic
Mechanical Properties
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Oguzlu-Baldelli, Hale
Yu, Jason
Lee, George
Lam, Frank
Jiang, Feng
Organization
University of British Columbia
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Fire
Keywords
Adhesive
PUR
Bond Strength
Halloysite
pMDI
Douglas-Fir
SPF
Bonding Shear Strength
Language
English
Research Status
Complete
Summary
One component PUR adhesive is widely used in engineered wood products applications, such as cross-laminated timber (CLT). However, the dramatic deterioration of PUR adhesive bond strength at elevated temperature can out tremendously threat for tall wood building, especially under fire. In this project, we are aiming to improving the bond strength of the PUR adhesive at high temperature by incorporating chemically modified halloysite to improve the poor interface between inorganic fillers and the polymer matrices. To improve the interaction with PUR (Loctite UR20 by Henkel®), the halloysite was chemically grafted with polymeric diphenylmethane diisocyanate (pMDI) (pMDI-H). The effect of adding pMDI modified halloysite to the PUR adhesives was investigated in terms of nanofiller dispersibility, thermal and mechanical properties of the pMDI-halloysite-PUR composite film, and the bonding shear strength of the glued Douglas fir and Spruce-Pine-Fir (SPF) shear blocks under different temperature. Significant improvement of the bond shear strength can be observed with the addition of 5 and 10% of pMDI-modified PUR adhesive, and the key research findings are summarized as below, a. pMDI can be successfully grafted onto hydroxylated halloysites to improve its dispersibility in one-component PUR adhesive; b. Addition of pMDI-H into PUR adhesive can lead to improved glass transition temperature and storage modulus. In contrast, no significant enhancement was observed in h-H added PUR films due to the poor dispersibility; c. Addition of up to 10% h-H and pMDI-H did not show significant change of the shear strength at 20 °C for both Douglas Fir and SPF; d. Significant enhancement of shear strength at elevated temperature (60-100 °C) can be observed for 5% and 10% pMDI-H modified PUR adhesive, showing 17% improvement for Douglas Fir and 27-37% for SPF.
Online Access
Free
Resource Link
Less detail

Three-Dimensional Numerical Calculation Model for Static Behavior Simulation of Cross-Laminated Timber Plates under Thermal Environment

https://research.thinkwood.com/en/permalink/catalogue2766
Year of Publication
2021
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Hu, Wenliang
Hou, Wei
Zhu, Zhao
Huang, Xuhui
Publisher
Hindawi Publishing Corporation
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Mechanical Properties
Keywords
Finite Element Method (FEM)
Thermal Behaviour
Thermal Environment
Deformation
Load Bearing Capacity
Language
English
Research Status
Complete
Series
Mathematical Problems in Engineering
Summary
Cross-laminated timber (CLT) is well known as an interesting technical and economical product for modern wood structures. The use of CLT for modern construction industry has become increasingly popular in particular for residential timber buildings. Analyzing the CLT behavior in high thermal environment has attracted scholars’ attention. Thermal environment greatly influences the CLT properties and load bearing capacity of CLT, and the investigation can form the basis for predicting the structural response of such CLT-based structures. In the present work, the finite element method (FEM) is employed to analyze the thermal influence on the deformation of CLT. Furthermore, several factors were taken into consideration, including board layer number, hole conformation, and hole position, respectively. In order to determine the influence, several numerical models for different calculation were established. The calculation process was validated by comparing with published data. The performance is quantified by demonstrating the temperature distribution and structural deformation.
Online Access
Free
Resource Link
Less detail

Transferability of 2021 International Building Code Tall Wood Building Provisions to the National Building Code of Canada

https://research.thinkwood.com/en/permalink/catalogue2806
Year of Publication
2021
Topic
Fire
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Hybrid Building Systems
Wood Building Systems
Organization
GHL Consultants Ltd.
Fast + Epp
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Other Materials
Application
Hybrid Building Systems
Wood Building Systems
Topic
Fire
Design and Systems
Seismic
Keywords
National Building Code of Canada
International Building Code
Building Code
Encapsulated Mass Timber Construction
Encapsulation
Exposed Mass Timber Elements
Building Height
Building Area
Fire Resistance Rating
Language
English
Research Status
Complete
Summary
The acceptable solutions in Division B of the anticipated 2020 NBCC limit the height of Groups C and D buildings of sprinklered encapsulated mass timber construction (EMTC) to 12 storeys in building height, and a measured building height of 42m. The recently published 2021 IBC contains provisions to permit buildings of mass timber construction under the IBC Type IV construction, surpassing the NBCC provisions by maximum building height, building area, occupancy groups, and interior exposed timber. The IBC mass timber buildings are permitted to have a building height of maximum 18 storeys, depending on the occupancy group. Within Type IV construction, four subdivisions are described to have varying maximum permissible building height, area, fire resistance rating (FRR), and interior exposed timber. Through a comparison of mass timber provisions of both Codes, relevant research reports, test reports, industry standards, this report documents the consequential and inconsequential differences and developed conclusions on whether the NBCC can adopt the IBC provisions, and with what modifications so that the new provisions may fit the NBCC context.
Online Access
Free
Resource Link
Less detail

WoodST: An Advanced Modelling Tool for Fire Safety Analysis of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2827
Year of Publication
2021
Topic
Connections
Design and Systems
Fire
Seismic
Wind
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Chen, Zhiyong
Dagenais, Christian
Ni, Chun
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Fire
Seismic
Wind
Keywords
Model
Heat Transfer
Charring Rate
Load-displacement Curve
Failure
Fire Safety
Language
English
Research Status
Complete
Series
InfoNote
Summary
An advanced modelling tool, WoodST, has been developed for fire safety analysis of timber structures. It is demonstrated that this advanced modelling tool can predict the structural response of LVL beams, glulam bolted connections, OSB-web I-joist and wood-frame floors under forces and fire conditions with an accuracy acceptable to design practitioners (i.e., within 10% of test data). The developed modelling tool can: Fill the gap in terms of suitable models for timber connections, which is an impediment for the design and construction of tall wood buildings; Provide a cost-effective simulation solution compared to costly experimental solutions; and Significantly reduce the cost and shorten the time for the development and/or optimization of new wood-based products and connections.
Online Access
Free
Resource Link
Less detail

Mass Timber Building Science Primer

https://research.thinkwood.com/en/permalink/catalogue2797
Year of Publication
2021
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Kesik, Ted
Martin, Rosemary
Organization
Mass Timber Institute
RDH Building Science
Publisher
Mass Timber Institute
Year of Publication
2021
Country of Publication
Canada
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Moisture
Fire
Acoustics and Vibration
General Information
Connections
Market and Adoption
Serviceability
Keywords
Mass Timber
Building Science
Language
English
Research Status
Complete
Summary
The development of this primer commenced shortly after the 2018 launch of the Mass Timber Institute (MTI) centered at the University of Toronto. Funding for this publication was generously provided by the Ontario Ministry of Natural Resources and Forestry. Although numerous jurisdictions have established design guides for tall mass timber buildings, architects and engineers often do not have access to the specialized building science knowledge required to deliver well performing mass timber buildings. MTI worked collaboratively with industry, design professionals, academia, researchers and code experts to develop the scope and content of this mass timber building science primer. Although provincially funded, the broader Canadian context underlying this publication was viewed as the most appropriate means of advancing Ontario’s nascent mass timber building industry. This publication also extends beyond Canada and is based on universally applicable principles of building science and how these principles may be used anywhere in all aspects of mass timber building technology. Specifically, these guidelines were developed to guide stakeholders in selecting and implementing appropriate building science practices and protocols to ensure the acceptable life cycle performance of mass timber buildings. It is essential that each representative stakeholder, developer/owner, architect/engineer, supplier, constructor, wood erector, building official, insurer, and facility manager, understand these principles and how to apply them during the design, procurement, construction and in-service phases before embarking on a mass timber building project. When mass timber building technology has enjoyed the same degree of penetration as steel and concrete, this primer will be long outdated and its constituent concepts will have been baked into the training and education of design professionals and all those who fabricate, construct, maintain and manage mass timber buildings. One of the most important reasons this publication was developed was to identify gaps in building science knowledge related to mass timber buildings and hopefully to address these gaps with appropriate research, development and demonstration programs. The mass timber building industry in Canada is still a collection of seedlings that continue to grow and as such they deserve the stewardship of the best available building science knowledge to sustain them until such time as they become a forest that can fend for itself.
Online Access
Free
Resource Link
Less detail

Mass Timber Design Manual

https://research.thinkwood.com/en/permalink/catalogue2780
Year of Publication
2021
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Organization
WoodWorks
Think Wood
Year of Publication
2021
Country of Publication
United States
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Connections
Cost
Design and Systems
Energy Performance
Environmental Impact
Fire
General Information
Moisture
Keywords
Mass Timber
United States
Building Systems
Tall Wood
Sustainability
IBC
Applications
Language
English
Research Status
Complete
Summary
This manual is helpful for experts and novices alike. Whether you’re new to mass timber or an early adopter you’ll benefit from its comprehensive summary of the most up to date resources on topics from mass timber products and applications to tall wood construction and sustainability. The manual’s content includes WoodWorks technical papers, Think Wood continuing education articles, case studies, expert Q&As, technical guides and other helpful tools. Click through to view each individual resource or download the master resource folder for all files in one handy location. For your convenience, this book will be updated annually as mass timber product development and the market are quickly evolving.
Online Access
Free
Resource Link
Less detail

Fire Tests of South African Cross-laminated Timber Wall Panels: Fire Ratings, Charring Rates, and Delamination

https://research.thinkwood.com/en/permalink/catalogue2442
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
van der Westhuyzen, S.
Walls, R.
de Koker, N.
Publisher
Scientific Elecronic Library Online (SciELO) South Africa
Year of Publication
2020
Country of Publication
South Africa
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Structural Fire Engineering
Charring Rate
Delamination
Panels
Pine
Eucalyptus
Language
English
Research Status
Complete
Series
Journal of the South African Institution of Civil Engineering
Online Access
Free
Resource Link
Less detail

Enclosure Fire Dynamics with a Cross-Laminated Timber Ceiling

https://research.thinkwood.com/en/permalink/catalogue2690
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Author
McNamee, Robert
Zehfuss, Jochen
Bartlett, Alastair
Heidari, Mohammad
Robert, Fabienne
Bisby, Luke
Publisher
Wiley Online Library
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Topic
Fire
Keywords
Fire Dynamics
Parametric Fire Models
Compartment Fire Test
Language
English
Research Status
Complete
Series
Fire and Materials
Summary
An experimental study of the influence of an exposed combustible ceiling on compartment fire dynamics has been performed. The fire dynamics in compartments with combustible cross-laminated timber ceilings vs non-combustible reinforced concrete ceilings in otherwise identical compartments with three different ventilation factors were investigated. The experimental results are compared against predictions from two theoretical models for compartment fire dynamics: (a) the parametric fire model given in EN 1991-1-2, and (b) a model developed at Technische Universität Braunschweig, which are the parametric fire models currently used in Germany. It is confirmed that the introduction of a combustible timber ceiling leads to higher temperatures within the enclosure, both under fuel-controlled and ventilation-controlled scenarios. It is also demonstrated that the theoretical models considered in this article require refinement in order to adequately represent all relevant scenarios when combustible ceilings are present. A refinement of the German model, by adding the fuel from the combustible ceiling to the occupancy fuel load, was shown to not adequately capture the response for the ventilation-controlled fires.
Online Access
Free
Resource Link
Less detail

National Fire Code Requirements - Course of Construction: Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2759
Year of Publication
2020
Topic
Fire
Application
Wood Building Systems
Organization
Canadian Wood Council
Year of Publication
2020
Country of Publication
Canada
Format
Book/Guide
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Construction
Fire Safety
Fire Protection
Language
English
Research Status
Complete
Summary
The vulnerability of any building, regardless of the material used, in a fire situation is higher during the construction phase when compared to the susceptibility of the building after it has been completed and occupied. This is because the risks and hazards found on a construction site differ both in nature and potential impact from those in a completed building; and these risks are occurring at a time when the fire prevention elements that are designed to be part of the completed building are not yet in place. For these reasons, construction site fire safety includes some unique challenges. Developing an understanding of these hazards and their potential risks is the first step towards fire prevention and mitigation during the course of construction (CoC).
Online Access
Free
Resource Link
Less detail

Predicting Fire Resistance Ratings of Timber Structures Using Artificial Neural Networks

https://research.thinkwood.com/en/permalink/catalogue2383
Year of Publication
2020
Topic
Fire
Application
Wood Building Systems
Floors
Author
Tung, Pham Thanh
Hung, Pham Thanh
Publisher
National University of Civil Engineering
Year of Publication
2020
Country of Publication
Vietnam
Format
Journal Article
Application
Wood Building Systems
Floors
Topic
Fire
Keywords
Artificial Neural Network
Fire Resistance
Sensitivity Analysis
Wooden Floor Assembly
Language
English
Research Status
Complete
Series
Journal of Science and Technology in Civil Engineering
Online Access
Free
Resource Link
Less detail

Evaluation of Fire-Retardant Treated Structural Glued Laminated Timber: Final Report - Part 2 of 2

https://research.thinkwood.com/en/permalink/catalogue2590
Year of Publication
2020
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Author
Yeh, Borjen
Chen, Jessie
Zelinka, Sam
Organization
APA – The Engineered Wood Association
Year of Publication
2020
Country of Publication
United States
Format
Report
Material
Glulam (Glue-Laminated Timber)
Topic
Fire
Keywords
Fire-Retardant-Treatment (FRT)
Hygrothermal
Structural
Language
English
Research Status
Complete
Summary
This report contains test results for the fire-retardant-treatment (FRT) and hygrothermal effects on structural glued laminated timber (glulam). This is the second part of the collaborative research project between ABA - The Engineered Wood Association, Tacoma, WA, and USDA Forest Products Laboratory (FPL), Madison, WI. The first part of this project is related to FRT laminated veneer lumber (LVL) and the results are provided in a separate research report. Selected mechanical properties, including tension, bending, and shear of the FRT glulam treated with the American Wood Protection ASsociation (AWPA) P49 and P50 fire retardants were evaluated in this study. These results are used to support the development of an ASTM standard for FRT glulam.
Online Access
Free
Resource Link
Less detail

Residual Compressive Load-Carrying Capacity of Cross-Laminated Timber Walls After Exposed to One-Side Fire

https://research.thinkwood.com/en/permalink/catalogue2689
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Bai, Yu
Zhang, Jin
Shen, Hao
Publisher
Elsevier
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Fire
Keywords
Residual Compressive Load-carrying Capacity
Fire Test
One-side Fire
Axial Compression Tests
Language
English
Research Status
Complete
Series
Journal of Building Engineering
Summary
Cross-laminated timber (CLT) panels are broadly utilized as structural members in modern timber structures. Variation in the residual resistance of CLT walls after fire exposure may lead to disruption of vertical force transmission and, in turn, structural collapse. To investigate the residual compressive load-carrying capacity of CLT walls after exposed to one-side fire, a series of tests were conducted on 3-ply and 5-ply members: axial compression tests, fire tests, and residual compressive load-carrying capacity tests. Combining the initial geometric defects obtained from the test results and the effect of shear deformation, theoretical formulae describing the compressive load-carrying capacity were deduced. Further considering the different mechanical properties over the residual cross-section model after fire, and the relative position between Region A and CLT orthogonal configuration, the calculation method of the residual compressive load-carrying capacity after fire were derived. The results of the residual compressive load-carrying capacity tests showed that the failure mode of the CLT walls after one-side fire was the eccentric compression, and the nonlinear segments of the load-axial and load-lateral displacement curves after fire accounted for larger proportion than those of axial compression tests. For the same total section thickness, the reduction in residual capacity of the 5-ply walls after fire was less than that of the 3-ply walls. The calculation results of the eccentric compression formulae considering shear deformation and initial geometric defect showed good agreement with the test values of axial compression tests. The residual compressive load-carrying capacity after one-side fire was predicted appropriately, which could be used as reference for assessing the residual load-carrying behavior of CLT elements after fire.
Online Access
Free
Resource Link
Less detail

Water Mist Systems for Protection of Mass Timber Structures - Phase 2 Residential Fire Suppression Tests

https://research.thinkwood.com/en/permalink/catalogue2682
Year of Publication
2020
Topic
Fire
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Author
Ko, Yoon
Elsagan, Nour
Gibbs, Eric
Publisher
National Research Council Canada
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Topic
Fire
Moisture
Keywords
Sprinklers
Water Mist Systems
Fire Suppression
Language
English
Research Status
Complete
Summary
"As an alternative option to conventional sprinkler system, water mist systems are considered for the protection of timber buildings because they use much less amounts of water compared to sprinkler systems. The effectiveness of high pressure water mist (HPWM) and low pressure water mist (LPWM) systems was investigated in comparison to sprinkler systems for a residential fire scenario involving mass timber structures. The most distinct characteristic of the HPWM and LPWM systems was fine water droplets generated from the nozzles, which demonstrated effective smoke cooling in the room. Although the water spray rate of the HPWM was four times lower than that of the sprinkler system, the water mist systems effectively control the fire and maintained the room tenable. Most systems (HPWM, LPWM and sprinklers) tested in this study did not prevent fire damage on the CLT walls, but the HPWM system with a wide spray angle demonstrated rapid fire suppression and protection of the CLT walls. In all tests, a large water pool formed on the floor, which appeared proportional to the total water spray discharge in each test, and the moisture contents measured on the surface and bottom edges of the CLT panels indicated that water can penetrate into the interface between the floor and the wall in a typical CLT assembly"--Executive summary, page 1.
Online Access
Free
Resource Link
Less detail

Experimental Investigation on the Fire Resistance of Glued-In Rod Timber Joints with Heat Resistant Modified Epoxy Resin

https://research.thinkwood.com/en/permalink/catalogue2665
Year of Publication
2020
Topic
Fire
Connections
Material
Glulam (Glue-Laminated Timber)
Author
Luo, Liquan
Shi, Benkai
Liu, Weiqing
Yang, Huifeng
Ling, Zhibin
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Fire
Connections
Keywords
Fire Resistance
Glued-In Rod Joint
Glued-In Rod Timber Joint
Pull-Out Test
Heat Resistant
Modified Epoxy Resin
Adhesive
Language
English
Research Status
Complete
Series
Materials
Summary
This paper presents an experimental evaluation of the fire resistance of glued-in rod timber joints using epoxy resin, with and without modification. A heat-resistant modified resin was designed by adding inorganic additives into the epoxy resin, aiming to improve the heat resistance. Joints that were made using the modified epoxy resin at room temperature showed a bearing capacity comparable to those with commercial epoxy resin. Twenty-one joint specimens with the modified epoxy resin and six with a commercial epoxy resin were tested in a fire furnace to evaluate the fire resistance. The main failure mode was the pull-out of the rod, which is typical in fire tests of this type of joints. As to the effects of the test parameters, this study considered the effects of adhesive types, sectional sizes, stress levels, and fireproof coatings. The test results showed that the fire resistance period of a joint can be evidently improved by modifying the resin and using the fireproof coating, as the improvements reached 73% and 35%, respectively, compared with the joint specimens with commercial epoxy resin. It was also found that, for all specimens, the fire resistance period decreased with an increase in the stress level and increased with an increase in the sectional sizes.
Online Access
Free
Resource Link
Less detail

Numerical Modelling of Water Mist Systems in Protection of Mass Timber Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue2681
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Author
Elsagan, Nour
Ko, Yoon
Publisher
National Research Council Canada
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Topic
Fire
Keywords
Sprinklers
Fire Suppression
Exposed Timber
Water Mist Systems
Language
English
Research Status
Complete
Summary
"This report presents the findings from a simulation parametric study to investigate the use of water mist systems for a residential compartment fire involving exposed mass timber structures. The fire and suppression models were first validated against experimental data obtained from the NRC fire tests that were conducted under the same project. Seventeen simulations were conducted using Fire Dynamic Simulator (FDS) software. The following parameters were investigated: effect of fuel arrangement and location on fire severity in exposed wood compartment, effect of different finishing on fire severity in compartment, fire and suppression in open space vs compartment, effectiveness of water mist systems in fire suppression in compartments with different finishing. The results show the effectiveness of the water mist system in suppressing the fire in exposed wood compartments where a high heat release is expected due to the high fuel load"--Executive summary, page iv.
Online Access
Free
Resource Link
Less detail

Encapsulated Mass Timber Construction Char Rate Analysis

https://research.thinkwood.com/en/permalink/catalogue2387
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls

Flame Spread in Concealed Mass Timber Spaces

https://research.thinkwood.com/en/permalink/catalogue2529
Year of Publication
2020
Topic
Fire
Application
Walls
Floors
Author
Ranger, Lindsay
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Application
Walls
Floors
Topic
Fire
Keywords
Floor Voids
Fire Tests
Mid-Rise
Concealed Spaces
Fire Performance
Mass Timber
Language
English
Research Status
Complete
Summary
The overall objective of this work is to expand options for designers of mass timber buildings by reducing the dependence on concrete and gypsum board though the demonstration of adequate fire performance of mass timber assemblies. This work is intended to demonstrate that mass timber surfaces can be left exposed in concealed spaces, under certain conditions, while still performing well to control flame spread; this could result in significant savings in construction. Flame spread testing will be completed to compare the performance of mass timber assemblies and concealed space designs that are currently allowed by the NFPA 13 to be exempt from the installation ofsprinklers. Data is needed to support the use of exposed mass timber in concealed spaces by demonstrating limited flame spread in concealed mass timber void spaces. Flame spread testing has already shown that mass timber has lower flame spread ratings than typically found with thinner wood panels. This will lead the way in allowing unsprinklered 305 mm (12 in.) deep concealed spaces beneath mass timber assemblies or exposed mass timber in other concealed spaces such as hollow wood floor beams. The goal is to generate data to support the use of exposed mass timber in concealed spaces. This data could be used in an Alternative Solution to gain approval for this type of design. Ultimately, this could lead to changing the NBCC to allow exposed mass timber in concealed spaces.
Online Access
Free
Resource Link
Less detail

Evaluation of Fire-Retardant Treated Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue2471
Year of Publication
2020
Topic
Fire
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)

307 records – page 1 of 16.