Skip header and navigation

Refine Results By

104 records – page 1 of 6.

Environmental Impacts of Building Construction Using Cross-laminated Timber Panel Construction Method: A Case of the Research Building in Kyushu, Japan

https://research.thinkwood.com/en/permalink/catalogue2412
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Use of Timber for the Sustainable City Growth and its Role in the Climate Change

https://research.thinkwood.com/en/permalink/catalogue2386
Year of Publication
2020
Topic
Environmental Impact
Material
Timber (unspecified)
Application
Wood Building Systems
General Application
Author
Hamadyk, E
Amado, M
de Brito, J
Publisher
IOP Publishing Ltd
Year of Publication
2020
Format
Journal Article
Material
Timber (unspecified)
Application
Wood Building Systems
General Application
Topic
Environmental Impact
Keywords
Sustainability
Embodied Carbon
Carbon Emissions
Construction
Language
English
Research Status
Complete
Series
IOP Conference Series: Earth and Environmental Science
Summary
According to the predictions of United Nations (2017) there are more than 7 billion people on Earth and this number will reach 9.7 billion by 2050. Today, most of the population lives in the urban areas and the rapid growth entails more construction in a housing sector. Since the industrial revolution the world has experienced countless technological attainments and on the other hand risky increase in natural resources use, energy consumption, greenhouse gases emission, ozone depletion, toxification and global temperature rising. The question how the cities can respond to urban growth is related to the sustainable goals of Agenda 2030. This research discusses potential of the usage of timber as construction material and it also brings the answer to this question. The wood is 100% renewable, recyclable and nontoxic material with capacity to absorb CO2 and perform low embodied energy. The increase of timber use in the construction contributes to sustainable development and to the reduction of waste, CO2 emission, as well as energy consumption. The aim of this paper is to discuss the advantages of using timber as a sustainable solution in urban context, in comparison with most commonly used concrete. The findings demonstrate the value of timber as sustainable construction material.
Online Access
Free
Resource Link
Less detail

Comparison of Carbon Footprints: Mass Timber Buildings vs Steels – A Literature Review

https://research.thinkwood.com/en/permalink/catalogue2380
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Cooney, Emily
Publisher
Lakehead University
Year of Publication
2020
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Sustainability
Carbon Footprint
Mass Timber
Steel
Greenhouse Gases
Climate Change
Engineered Wood Product (EWP)
Language
English
Research Status
Complete
Summary
Sustainability and innovation are key components in the fight against climate change. Mass timber buildings have been gaining popularity due to the renewable nature of timber. Although research comparing mass timber buildings to more mainstream buildings such as steel is still in the early stages and therefore, limited. We are looking to determine the difference between carbon footprints of mass timber and traditional steel and concrete buildings. This is done with the intention of determining the sustainability and practicality of mass timber buildings.
Online Access
Free
Resource Link
Less detail

The Economic and Emissions Benefits of Engineered Wood Products in a Low-Carbon Future

https://research.thinkwood.com/en/permalink/catalogue2351
Year of Publication
2020
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Other Materials
Application
Wood Building Systems
General Application

Environmental and Economic Evaluation of Small-Scale Bridge Repair Using Cross-Laminated Timber Floor Slabs

https://research.thinkwood.com/en/permalink/catalogue2397
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Bridges and Spans

Zero-Waste Mass-Timber Residential High-Rise: A Sustainable High-density Housing Solution

https://research.thinkwood.com/en/permalink/catalogue2381
Year of Publication
2020
Topic
Environmental Impact
Design and Systems
Material
Timber (unspecified)
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
van Houten, Robert
Publisher
Delft University of Technology
Year of Publication
2020
Country of Publication
Netherlands
Format
Thesis
Material
Timber (unspecified)
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Design and Systems
Keywords
Mass Timber
Residential
High-Rise
End of Life
Language
English
Research Status
Complete
Summary
More and more people live in cities. The building industry is responsible for 33% of waste production and is set to increase further to 50% in 2025. The energy efficiency is continuously increased, but the waste production at the end of life of a building is largely ignored. This design proposes a solution in the form of a zero-waste high-rise design. It uses only recyclable or renewable materials. Mass-timber is chosen as the main material as it is not only renewable and easily reusable, it is also a storage of CO2. The design reuses the foundation of existing buildings, and with the lightweight properties of mass-timber, increases the density on the location by building taller. The design is four times taller as the current buildings. To allow for sustainable densification, the design offers public and collective qualities. The building has been designed is such a way to be easily refitted during its life cycle or to be completely disassembled at the end of life.
Online Access
Free
Resource Link
Less detail

Design Concept for a Greened Timber Truss Bridge in City Area

https://research.thinkwood.com/en/permalink/catalogue2392
Year of Publication
2020
Topic
Design and Systems
Environmental Impact
Material
Timber (unspecified)
Application
Bridges and Spans
Author
Kromoser, Benjamin
Ritt, Martin
Spitzer, Alexandra
Stangl, Rosemarie
Idam, Friedrich
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
Timber (unspecified)
Application
Bridges and Spans
Topic
Design and Systems
Environmental Impact
Keywords
Wooden Trusses
Timber Bridges
Timber Engineering
Greened Structures
Vertical Green
Sustainable Structural Engineering
Digital Design
Parametric Design
Automated Construction
Resource-Efficient Structural Engineering
Language
English
Research Status
Complete
Series
Sustainability
Summary
Properly designed wooden truss bridges are environmentally compatible construction systems. The sharp decline in the erection of such structures in the past decades can be led back to the great effort needed for design and production. Digital parametric design and automated prefabrication approaches allow for a substantial improvement of the efficiency of design and manufacturing processes. Thus, if combined with a constructive wood protection following traditional building techniques, highly efficient sustainable structures are the result. The present paper describes the conceptual design for a wooden truss bridge drawn up for the overpass of a two-lane street crossing the university campus of one of Vienna’s main universities. The concept includes the greening of the structure as a shading design element. After an introduction, two Austrian traditional wooden bridges representing a good and a bad example for constructive wood protection are presented, and a state of the art of the production of timber trusses and greening building structures is given as well. The third part consists of the explanation of the boundary conditions for the project. Subsequently, in the fourth part, the conceptual design, including the design concept, the digital parametric design, the optimization, and the automated prefabrication concept, as well as the potential greening concept are discussed, followed by a summary and outlook on future research.
Online Access
Free
Resource Link
Less detail

Environmental Assessment of the Production and End-of-Life of Cross-Laminated Timber in Western Washington

https://research.thinkwood.com/en/permalink/catalogue2299
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
General Application
Wood Building Systems
Author
Chen, Cindy Xiaoning
Publisher
University of Washington
Year of Publication
2019
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
General Application
Wood Building Systems
Topic
Environmental Impact
Keywords
End of Life
Life Cycle Analysis
Life-Cycle Assessment
Waste Reduction
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of Forest-Based Products: A Review

https://research.thinkwood.com/en/permalink/catalogue2175
Year of Publication
2019
Topic
Environmental Impact
Material
Timber (unspecified)
Application
Wood Building Systems
General Application

Life Cycle Analysis of Cross Laminated Timber in Buildings: A Review

https://research.thinkwood.com/en/permalink/catalogue2141
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Emission of Particulate Matters During Construction: A Comparative Study on a Cross Laminated Timber (CLT) and a Steel Building Construction Project

https://research.thinkwood.com/en/permalink/catalogue2282
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Ahmed, Shafayet
Arocho, Ingrid
Publisher
Oregon State University
Year of Publication
2019
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Environmental Impact
Keywords
Steel
Pollutants
Construction Sites
PM Emission
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment (LCA) of Cross-Laminated Timber (CLT) Produced in Western Washington: The Role of Logistics and Wood Species Mix

https://research.thinkwood.com/en/permalink/catalogue2009
Year of Publication
2019
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Chen, Cindy
Pierobon, Francesca
Ganguly, Indroneil
Publisher
MDPI
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Cradle-to-Gate
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Online Access
Free
Resource Link
Less detail

Life Cycle Carbon Emission Assessment for Wood Frame Buildings in China

https://research.thinkwood.com/en/permalink/catalogue2273
Year of Publication
2019
Topic
Environmental Impact
Material
Timber (unspecified)
Application
Wood Building Systems
Organization
China Academy of Building Research
Year of Publication
2019
Country of Publication
China
Material
Timber (unspecified)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
China Standard for Building Carbon Emission Calculation
Carbon Emissions
Language
Chinese
English
Research Status
Complete
Notes
English summary of the report is on pages 80-102
Summary
Relying on China’s national standard “Standard for Building Carbon Emission Calculation” and related reports published by the Athena Institute, this report calculates the life cycle carbon emissions of wood buildings in China. The study collects basic information of all the projects, such as quantity of building materials, building envelope, energy system and so on. Calculations are conducted for 7 projects from the aspects of product stage, transportation stage, construction stage, operational energy and demolition stage
Online Access
Free
Resource Link
Less detail

Costs and Procurement for Cross-Laminated Timber in Mid-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue2112
Year of Publication
2019
Topic
Cost
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Lien, Anne Gunnarshaug
Lolli, Nicola
Publisher
Kaunas University of Technology
Year of Publication
2019
Country of Publication
Lithuania
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Cost
Environmental Impact
Keywords
Mid-Rise
Greenhouse Gases
Student Residence
Language
English
Research Status
Complete
Series
Journal of Sustainable Architecture and Civil Engineering
ISSN
2335–2000
Online Access
Free
Resource Link
Less detail

Carbon Value Engineering: Integrated Carbon and Cost Reduction Strategies for Building Design

https://research.thinkwood.com/en/permalink/catalogue2268
Year of Publication
2019
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Author
Robati, Mehdi
Oldfield, Philip F.
Nezhad, Ali Akbar
Carmichael, David
Organization
UNSW Sydney
Multiplex Australasia
Publisher
Cooperative Research for Low Carbon Living
Year of Publication
2019
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Topic
Environmental Impact
Cost
Keywords
Value Engineering
Embodied Carbon
Hybrid Life Cycle Assessment
Capital Cost
Environmentally-extended Input-Output Analysis
Language
English
Research Status
Complete
Summary
The research presents a Carbon Value Engineering framework. This is a quantitative value analysis method, which not only estimates cost but also considers the carbon impact of alternative design solutions. It is primarily concerned with reducing cost and carbon impacts of developed design projects; that is, projects where the design is already a completed to a stage where a Bill of Quantity (BoQ) is available, material quantities are known, and technical understanding of the building is developed. This research demonstrates that adopting this integrated carbon and cost method was able to reduce embodied carbon emissions by 63-267 kgCO2-e/m2 (8-36%) when maintaining a concrete frame, and 72-427 kgCO2-e/m2 (10-57%) when switching to a more novel whole timber frame. With a GFA of 43,229 m2 these savings equate to an overall reduction of embodied carbon in the order of 2,723 – 18,459 tonnes of CO2-e. Costs savings for both alternatives were in the order of $127/m2 which equates to a 10% reduction in capital cost. For comparison purposes the case study was also tested with a high-performance façade. This reduced lifecycle carbon emissions in the order of 255 kgCO2-e/m2, over 50 years, but at an additional capital cost, due to the extra materials. What this means is strategies to reduce embodied carbon even late in the design stage can provide carbon savings comparable, and even greater than, more traditional strategies to reduce operational emissions over a building’s effective life.
Online Access
Free
Resource Link
Less detail

Evaluation of Thermal Performance, Environmental Impact, and Cost Effectiveness of an XLam Component for Retrofitting in Existing Buildings

https://research.thinkwood.com/en/permalink/catalogue1414
Year of Publication
2017
Topic
Seismic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Dalla Mora, Tiziano
Righi, Alessandro
Peron, Fabio
Romagnoni, Piercarlo
Publisher
Springer, Cham
Year of Publication
2017
Country of Publication
Switzerland
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Environmental Impact
Cost
Keywords
Retrofit
Installation
Assembly
Prototype
Italy
Residential
Thermal
Language
English
Research Status
Complete
Series
Mediterranean Green Buildings & Renewable Energy
ISBN
978-3-319-30746-6
Online Access
Payment Required
Resource Link
Less detail

Quantifying Environmental Impacts of Structural Material Choices Using Life Cycle Assessment: A Case Study

https://research.thinkwood.com/en/permalink/catalogue1393
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Author
Davies, Don
Johnson, Leif
Doepker, Blake
Hedlund, Meagan
Editor
Francesco Pomponi Catherine De Wolf Alice Moncaster
Publisher
Springer, Cham
Year of Publication
2018
Country of Publication
Switzerland
Format
Book Section
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Office Buildings
Life-Cycle Assessment
Embodied Carbon
Language
English
Research Status
Complete
Series
Embodied Carbon in Buildings
Notes
pp 123-142
ISBN
978-3-319-72796-7
Online Access
Payment Required
Resource Link
Less detail

Life Cycle Assessment of a Residential Building with Cross-laminated Timber Structure in Granada-Spain

https://research.thinkwood.com/en/permalink/catalogue2408
Year of Publication
2019
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Vidal, Rosario
Sánchez-Pantoja Belenguer, NúriaOrcid
Martínez Montes, German
Publisher
Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc) (CSIC)
Year of Publication
2019
Country of Publication
Spain
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Residential Buildings
Life-Cycle Assessment
Energy Efficiency
Construction
Language
English
Research Status
Complete
Series
Informes de la Construcción
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Buildings: A WBLCA Case Study Series

https://research.thinkwood.com/en/permalink/catalogue2360
Year of Publication
2019
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Author
Kwok, Alison
Zalusky, Hannah
Rasmussen, Linsday
Rivera, Isabel
McKay, Hannah
Organization
TallWood Design Institute
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Topic
Environmental Impact
Design and Systems
Keywords
LCA
Life-Cycle Assessment
Case Study
Embodied Carbon
Language
English
Research Status
Complete
Summary
This series highlights five whole building life cycle assessments (WBLCAs) of buildings incorporating the building material known as cross-laminated timber (CLT) into some or all of their structure, using a primary cradle-to-grave system boundary. This case study series will serve as an educational resource for academics, professionals, and CLT project stakeholders. While there is some uncertainty about the best way to reduce greenhouse gas emissions from architecture and construction, using CLT and other wood building materials is one possible means to reduce the emissions associated with a building’s materials. When forests are managed sustainably, wood construction materials can contribute to climate change mitigation goals as an indefinite carbon store and as a replacement of other fossil-fuel intensive materials. WBLCA is an assessment method to estimate the environmental impacts of buildings; this series offers insight into the current possibilities and limitations of WBLCA for CLT buildings. The series begins with background information on WBLCA methods and CLT, a review of previously published CLT building WBLCAs, and a life cycle assessment of an individual CLT wall element using the WBLCA softwares Tally® and Athena Impact Estimator for Buildings (Athena IE).
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment and Environmental Building Declaration for the Design Building at the University of Massachusetts

https://research.thinkwood.com/en/permalink/catalogue1836
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
General Application
Wood Building Systems

104 records – page 1 of 6.