Skip header and navigation

12 records – page 1 of 2.

Bending Strength of Cross Laminated Timber Beams Loaded In Plane

https://research.thinkwood.com/en/permalink/catalogue28
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Blaß, Hans Joachim
Flaig, Marcus
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Bending Strength
Monte Carlo Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
: A computer aided numerical model for the simulation of the in-plane bending strength of CLT beams is presented. The model uses the Monte-Carlo-Method to generate mechanical characteristics of board lamellae and is suitable for the investigation of statistical effects such as homogenisation and size effects. Six different types of CLT beams, varying in size and in layup, were tested to validate the model and except for beams with only one lamella in direction of the beam height good agreement was found between the experimental results and the model’s simulations.
Online Access
Free
Resource Link
Less detail

Contact Joints in Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue1558
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Schmidt, Tobias
Blaß, Hans Joachim
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Contact Joints
Joints
Stiffness
Load Carrying Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1321-1328
Summary
Cross laminated timber (CLT) members are especially suited for in-plane loads due to their high shear strength and stiffness. However, available connection techniques show limited load-carrying capacities and stiffness values in comparison to the shear capacity of CLT. To use the potential of CLT under in-plane loading, new connection techniques, so called contact joints, with increased stiffness and load-carrying capacities were developed. 10 different types of these contact joints, varying geometry and connector material, were studied. The developed contact joints can substitute traditional connection techniques.
Online Access
Free
Resource Link
Less detail

Damage Problems in Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue165
Year of Publication
2012
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Author
Vanya, Csilla
Year of Publication
2012
Country of Publication
Poland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Serviceability
Keywords
Construction
Damage
Delamination
Loads
Manufacturing
Service Life
Stress
Tension
Language
English
Research Status
Complete
Series
Drewno
Summary
On a number of occasions glued laminated timber breaks apart before the end of their service life. Examples in Germany (Frese M., Blaß H. J. [2011]) and Denmark (Hansson, Larsen [2005] ) show that this problem is real. In order to find the causes of the problem, extensive tests were conducted: 16 buildings with glued laminated timber were examined on the spot, calculations and laboratory work were carried out. These examinations told us that not only did the properties of the wooden material cause the damage, but the problems were also due to the wood used and the method of construction. In the calculations, the external load and residual stresses occurring in the glued laminated timber were included. Residual tensions in this timber were generated by climatic stresses and also due to the method of construction. These stresses also accumulated along with the stresses of the external load. Laboratory work was carried out to measure the delamination. We examined whether these analyses and calculations prove or disprove the results of the on- the- spot examinations.
Online Access
Free
Resource Link
Less detail

Finger-Jointed Frame Corners and Tapered Beams of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue931
Year of Publication
2015
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Blaß, Hans Joachim
Flaig, Marcus
Organization
Karlsruher Institut für Technologie
Year of Publication
2015
Country of Publication
Germany
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Design and Systems
Keywords
Finger Joints
double pitched beams
Language
German
Research Status
Complete
Summary
The report describes the experimental and analytical research that was carried out for the development of large double pitched beams and three hinged frames made of cross laminated timber. The results are used to derive of design approaches for large finger joints in cross laminated timber.
Online Access
Free
Resource Link
Less detail

Glulam from Acetylated Radiata Pine

https://research.thinkwood.com/en/permalink/catalogue956
Year of Publication
2013
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Author
Blaß, Hans Joachim
Frese, Matthias
Kunkel, Henning
Schädle, Patrick
Organization
Karlsruher Institut für Technologie
Year of Publication
2013
Country of Publication
Germany
Format
Report
Material
Glulam (Glue-Laminated Timber)
Topic
Serviceability
Keywords
Pine
Durability
Dimensional Stability
Fasteners
Language
German
Research Status
Complete
Summary
Acetylierte Radiata Kiefer, das Produkt einer speziellen Holzmodifikation, besitzt eine verbesserte Dauerhaftigkeit und Formstabilität. Sie ist grundsätzlich für die Herstellung von Brettschichtholz frei bewitterter Konstruktionen geeignet. In der Forschungsarbeit werden entsprechende Kennwerte, die für die Bemessung von Bauteilen und von Verbindungsmitteln erforderlich sind, mit wissenschaftlichen Verfahren hergeleitet.
Online Access
Free
Resource Link
Less detail

Influence of Moisture Content and Gaps on the Withdrawal Resistance of Self Tapping Screws in CLT

https://research.thinkwood.com/en/permalink/catalogue299
Year of Publication
2014
Topic
Connections
Mechanical Properties
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Silva, Catarina
Ringhofer, Andreas
Branco, Jorge
Lourenço, Paulo
Schickhofer, Gerhard
Organization
National Congress of Experimental Mechanics
Year of Publication
2014
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Moisture
Keywords
Self-Tapping Screws
Withdrawal
Gaps
Moisture Content
Language
English
Conference
9th National Congress of Experimental Mechanics
Research Status
Complete
Notes
October 15-17, 2014, Aveiro, Portugal
Summary
Self-tapping screws (STS) have been proclaimed as the easiest solution for structural timber connections, in special for cross laminated timber (CLT) constructions. In order to understand deeply the composite model “CLT-STS”, an experimental campaign which comprised 270 withdrawal tests was carried out. Maximum withdrawal load capacity of self-tapping screws inserted in plane side of a three layered CLT panel was evaluated considering three main parameters: moisture levels of CLT (i), number of gaps (ii) and the width of gaps (iii). Regarding (i), connections were tested with CLT at 8%, 12% and 18% of moisture content. Concerning (ii) and (iii), different test configurations with 1, 2 and 3 gaps, with 0 or 4mm, were tested. The influences of moisture content and number of gaps were modeled. Further a correlation between test results and a prediction model developed by Uibel and Blaß (2007) has been proposed.
Online Access
Free
Resource Link
Less detail

The Influences of Moisture Content Variation, Number and Width of Gaps on the Withdrawal Resistance of Self Tapping Screws inserted in Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1359
Year of Publication
2016
Topic
Connections
Moisture
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Silva, Catarina
Branco, Jorge
Ringhofer, Andreas
Lourenço, Paulo
Schickhofer, Gerhard
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Moisture
Mechanical Properties
Keywords
Withdrawal Tests
Withdrawal Resistance
Self-Tapping Screws
Moisture Content
Gaps
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
A large experimental campaign comprised of 470 withdrawal tests was carried out, aiming to quantify the withdrawal resistance of self-tapping screws (STS) inserted in the side face of cross laminated timber (CLT) elements. In order to deeply understand the “CLT-STS” composite model, the experimental tests considered two main parameters: (i) simple and cyclic changes on moisture content (MC) and (ii) number and width of gaps. Regarding (i), three individual groups of test specimens were stabilized with 8%, 12% and 18% of moisture content and one group was submitted to a six month RH cycle (between 30% and 90% RH). Concerning (ii), different test configurations with 0 (REF), 1, 2 and 3 gaps, and widths equal to 0mm (GAP0) or 4mm (GAP4), were tested. The influences of MC and number of gaps were modeled by means of least square method. Moreover, a revision of a prediction model developed by Uibel and Blaß (2007) was proposed. The main findings of the experimental campaign were: the decrease of withdrawal resistance for specimens tested with MC=18% in most configurations; the unexpected increase of withdrawal resistance as the number of gaps with 0mm increased; and, the surprising increase of withdrawal resistance for REF specimens submitted to the RH cycle.
Online Access
Free
Resource Link
Less detail

Rod-Shaped Components Made of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1174
Year of Publication
2012
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Flaig, Marcus
Blaß, Hans Joachim
Organization
Karlsruher Institut für Technologie
Publisher
KIT Scientific Publishing
Year of Publication
2012
Country of Publication
Germany
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Load-Bearing Behavior
Notches
Holes
Language
German
Research Status
Complete
Summary
Brettsperrholz (CLT) besitzt im Gegensatz zu Brettschichtholz verhältnismäßig hohe Schub- und Querzugfestigkeiten. Bauteile aus CLT sind daher weniger empfindlich gegenüber Rissen und weisen eine größere Robustheit auf. Im Rahmen eines Forschungsvorhabens wurde das Tragverhalten von CLT-Trägern mit Ausklinkungen, Durchbrüchen und Queranschlüssen sowie Trägern mit schräg zur Faserrichtung angeschnittenen Rändern untersucht und Bemessungsansätze für die verschiedenen Trägerformen entwickelt.
Online Access
Free
Resource Link
Less detail

Shear Strength and Shear Stiffness of CLT-Beams Loaded in Plane

https://research.thinkwood.com/en/permalink/catalogue1887
Year of Publication
2013
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Flaig, Marcus
Blaß, Hans
Year of Publication
2013
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
G-XLam
Strength
Stress
Design
Stiffness
Language
English
Conference
International Council for Research and Innovation in Building and Construction, Working Commission W18 - Timber Structures
Research Status
Complete
Notes
August 26-29, 2013, Vancouver, Canada
ISSN
1864-1784
Online Access
Free
Resource Link
Less detail

12 records – page 1 of 2.