Project contact is Erol Karacabeyli at FPInnovations
Summary
To support NRCan's Tall Wood Building Demonstration Initiative, FPInnovations developed and published the 2014 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada. More than 80 technical professionals comprised of design consultants and experts from FPInnovations, the National Research Council, the Canadian Wood Council and universities were involved in its development. The Guide has gained national and worldwide reputation as one of the most complete and credible documents helping to introduce to the design and construction community, and Authorities Having Jurisdiction the terms "Mass Timber Construction" and "Hybrid Tall Wood Buildings".
Since the publication of the First Edition, a number of tall wood buildings have been designed and constructed. Substantial regulatory changes are expected to happen based on the experience obtained from the demonstration initiative and the extensive research that has taken place domestically and internationally since the publication of the First Edition. These developments highlight a need for the Guide to be updated so that it aligns with efforts currently underway nationally and provincially and continues to lead in providing the design and construction community technical insight into new opportunities for building in wood.
The First Edition of the Guide helped to focus the efforts of the early adopters who participated in NRCan's Tall Wood Building Demonstration Initiative. Updating and aligning the Guide with the release of the new National Building Code of Canada and the Canadian wood design standard (CSA O86), and sharing the experiences gained from tall wood buildings built since the First Edition, will not only continue to expand the base of early adopters, but also help to move aspects of mass timber and hybrid wood buildings into the mainstream.
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
A. Shop Drawings and Details for Tests
B. Sound and Impact Test Results Summary
C. Test 1: Sound and Impact Transmission Test - CLT
D. Test 2: Sound and Impact Transmission Test - Concrete Topping
E. Test 3a: Sound and Impact Transmission Test - Marmoleum
F. Test 3b: Sound and Impact Transmission Test - Marmoleum
G. Test 4: Sound and Impact Transmission Test - Carpet
H. Test 5a: Sound and Impact Transmission Test - Luxury Vinyl Plank
I. Test 5b: Sound and Impact Transmission Test - Luxury Vinyl Plank
J. Test 6: Sound and Impact Transmission Test - Mechanical Roof
Project contact is Étienne Marceau at Université Laval
Summary
The objective of this project is to identify the risk factors taken into account in the pricing of an insurance contract for a construction site. This project aims to synthesize the quantitative approaches used in practice and presented in academic research for the pricing of home insurance and commercial insurance. Then, we aim to identify the preventive measures that can be taken to reduce the impact of different perils in the insurance of a construction site in wood or other.