When designing a tall timber building, the accelerations due to wind loads are in many cases decisive. The parameters governing the dynamic behaviour of the building are the structure's stiffness, damping and mass together with the loads. The first two parameters are not well-known during the serviceability limit state of timber structures generally and of timber connections specifically. In this study, dynamical properties of a large glulam truss, a part of the vertical and horizontal structural system in a residential six-storey timber building, are estimated from measurements made in the manufacturing plant. The timber members of the truss are joined with slotted-in steel plates and dowels. Forced vibrational test data are used to extract the dynamical properties. Finite element (FE) models, supported by the experimental results, were developed and simulations, to study the influence of the connection stiffnesses on the total behaviour, were performed. The vibration test results of measurements made on separate structural parts give valuable input to model timber structures and better possibilities to simulate the dynamic behaviour of tall timber buildings as well as the load distribution in wooden structures in the serviceability limit state.
In this paper the load-bearing behaviour of traditional and newly developed timber-timber connections, multi-step and free formed, are analysed within an extensive investigation focusing on joint failure. DIC measurements allowed for an assessment of the initial behaviour of the systems and their specific failure modes. By comparing the stiffness and various load levels to those of typical joint designs the improved load-bearing behaviour of the proposed joints was demonstrated while defining the range of the obtained linear-elastic phase. The results show that the onset of failure, based on the ultimate load, strongly depends on the geometry of the joint.
Inaccuracies within timber step joints are a perennial problem of the wood construction industry. Even perfectly constructed carpentry step joints can become imperfect due to a change in moisture content. The predominant question when looking at step joints with gaps is to what extent the load-bearing behaviour is influenced by these inaccuracies. The authors look beyond this question and investigate if intentionally manufactured gaps could have a positive influence on the load-bearing behaviour and the failure mode of regular and newly designed carpentry joints.
The structural use of high-strength veneer-based products requires the development of more performant connections, than those actually used. Great development is going on with glued-in bars. Besides high efficiency, adequate ductility may be achieved, resulting in robust structural components. The presentation will focus in the application of glued-in bars inserted parallel to the grain. Generally individual glued-in bars show a very brittle behaviour. Through special shaping of the steel rod and controlled application of ductile steels, ductile connections with groups of glued-in rods are now realistic. This is shown in typical applications like tension joints, bending joints in beams and trusses. By extending the ductility requirements, plastic design of such connections will now be possible. This opens the way for more performant design of complex structures.
The rise of wood buildings in the skylines of cities forces structural dynamic and timber experts to team up to solve one of the new civil-engineering challenges, namely comfort at the higher levels, in light weight buildings, with respect to wind-induced vibrations. Large laminated timber structures with mechanical joints are exposed to turbulent horizontal excitation with most of the wind energy blowing around the lowest resonance frequencies of 50 to 150 m tall buildings. Good knowledge of the spatial distribution of mass, stiffness and damping is needed to predict and mitigate the sway in lighter, flexible buildings. This paper presents vibration tests and reductions of a detailed FE-model of a truss with dowel-type connections leading to models that will be useful for structural engineers. The models also enable further investigations about the parameters of the slotted-in steel plates and dowels connections governing the dynamical response of timber trusses.
This paper presents an experimental and analytical investigation on the application of laminated veneer lumber (LVL) made of European beech wood (fagus sylvatica L.) in timber truss structures. Particular focus is laid on developing improved design approaches for dowel-type connections and on promoting ductile failure behaviour, as the connections in timber trusses are generally governing the performance of the whole structure. Embedment tests were carried out in order to assess the embedment strength values for beech LVL, which are necessary to design dowel-type connections. The results showed higher values for beech LVL, as compared to estimations using existing formulas from design codes. A series of tensile connection tests showed that, using cross-layered beech LVL, ductile dowel-type connections with high load-carrying capacities can be designed, given that premature brittle failures are prevented. Lastly, tests on full truss structures confirmed that the favourable behaviour of dowel-type connections in cross-layered beech LVL can be implemented in truss systems, improving the global behaviour of the whole structural element.