Skip header and navigation

11 records – page 1 of 2.

Affordances of Complexity: Evaluation of a Robotic Production Process for Segmented Timber Shell Structures

https://research.thinkwood.com/en/permalink/catalogue1913
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shell Structures
Author
Krieg, Oliver David
Bechert, Simon
Groenewolt, Abel
Horn, Rafael
Knippers, Jan
Menges, Achim
Publisher
Intergrated Digital Conference (INDICO)
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Shell Structures
Topic
Design and Systems
Keywords
Robotic Fabrication
Computational Design
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23, 2018, Seoul, Republic of Korea
Summary
In this paper, possibilities and challenges of novel robotic manufacturing processes for segmented timber shells are presented and evaluated. This is achieved by comparing two newly developed construction systems for segmented plate structures: one system consisting of cross-laminated timber elements that are connected with crossing screws, and one system consisting of light-weight, hollow components with finger joints as well as bolted connections. Segmented timber shells are introduced as an emerging structural typology transitioning from applied research to the building industry, enabled by new developments in computational design and digital fabrication methods. Although the two construction systems share their underlying segmentation strategy, they differ in their joint design approach and ensuing fabrication complexity. While the first construction system can be produced with conventional machining technology in the timber industry, the second system was developed in conjunction with innovative robotic manufacturing methods. In order to evaluate the relationships and trade-offs of fabrication complexity and performance, the two systems are compared on a range of metrics, including material use, environmental impact and costs.
Online Access
Free
Resource Link
Less detail

Assessing the Complexity of Timber Gridshells in Architecture through Shape, Structure, and Material Classification

https://research.thinkwood.com/en/permalink/catalogue1876
Year of Publication
2019
Topic
Design and Systems
Application
Shell Structures
Author
Charest, Philippe
Potvin, André
Demers, Claude
Ménard, Sylvain
Publisher
North Carolina State University
Year of Publication
2019
Format
Journal Article
Application
Shell Structures
Topic
Design and Systems
Keywords
Timber gridshells
Free-Form
Architectural Complexity
Non-Standard Grids
Natural Composite Materials
Research Status
Complete
Series
BioResources
Summary
New possibilities offered by recent modelling software allow the design of organic shapes that are appealing to architects and engineers but may encompass serious issues such as an overconsumption of materials. In this context, there is a renewed interest in systems allowing the materialization of curved surfaces such as timber gridshells, which can be defined as shells with their structures concentrated in strips. However, gridshell design becomes highly challenging if complex grid configurations and new material possibilities are combinedly explored with form generations. These upheavals highlight the need for a classification system to seize the potential and the limitations of timber gridshells to address complex geometries. The classification of 60 timber gridshells enables a critical examination in the course of the ceaseless quest for complexity in architecture by evaluating current building possibilities and predict future building opportunities in terms of form, structure, and materiality.
Online Access
Free
Resource Link
Less detail

Experimental Investigation on Eccentric Compression Performance of Semirigid Joints in Reticulated Timber Shells

https://research.thinkwood.com/en/permalink/catalogue1780
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Shell Structures
Author
Sun, Xiaoluan
Liu, Weiqing
Lu, Weidong
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Shell Structures
Topic
Connections
Mechanical Properties
Keywords
Compression Tests
Joints
Bending Stiffness
Bending Capacity
Failure Modes
Ductility
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5463-5470
Summary
Compression tests were conducted on the glulam members under different eccentricities, including three cases of 0mm,50mm and 100mm respectively, to study the mechanical performance of the new assemblage joints in reticulated timber shells. The bending stiffness and bending capacity of joints were evaluated, at the same time, the influence of failure mode and the changes...
Online Access
Free
Resource Link
Less detail

A framework to Automate the Design of Digitally-Fabricated Timber Plate Structures

https://research.thinkwood.com/en/permalink/catalogue2773
Year of Publication
2021
Topic
Design and Systems
Application
Shell Structures
Author
Rad, Aryan Rezaei
Burton, Henry
Rogeau, Nicolas
Vestartas, Petras
Weinand, Yves
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Shell Structures
Topic
Design and Systems
Keywords
Connections
Timber Plates
CAD
CAE
Computer Programming
Macro Modeling Technique
Research Status
Complete
Series
Computers & Structures
Summary
The current study uses knowledge from digital architecture, computer science, engineering informatics, and structural engineering to formulate an algorithmic framework for integrated Computer-Aided Design (CAD) and Computer-Aided Engineering (CAE) of Integrally-Attached Timber Plate (IATP) structures. The algorithm is designed to take the CAD 3D geometry of an IATP structure as input and automates the construction and analysis of the corresponding CAE model using a macroscopic element, which is an alternative to continuum Finite Element (FE) models. Each component of the macro model is assigned a unique tag that is linked to the relevant geometric and structural parameters. The CAE model integrity is maintained through the use of the common data model (CDM) concept and object-oriented programming. The relevant algorithms are implemented in Rhinoceros 3D using RhinoCommon, a .NET software development kit. Once the CAE macro model is generated, it is introduced to the OpenSees computational platform for structural analysis. The algorithmic framework is demonstrated using two case structures: a prefabricated timber beam with standard geometry and a free-form timber plate arch. The results are verified with measurements from physical experiments and FE models, where the time needed to convert thousands of CAD assemblies to the corresponding CAE models for response simulation is considerably reduced.
Online Access
Free
Resource Link
Less detail

Integrative structural design and engineering methods for segmented timber shells - BUGA Wood Pavilion

https://research.thinkwood.com/en/permalink/catalogue2903
Year of Publication
2021
Topic
Design and Systems
Application
Shell Structures
Author
Bechert, Simon
Sonntag, Daniel
Aldinger, Lotte
Knippers, Jan
Organization
University of Stuttgart
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Shell Structures
Topic
Design and Systems
Keywords
Plate shells
Segmented Timber Shell
Lightweight Timber Structure
Form-finding
Optimization
Structural Design
Robitic Fabrication
Modular System
Finger Joints
Integrative design
Computational Design
Research Status
Complete
Series
Structures
Summary
The presented research describes the holistic development of a modular lightweight timber shell. So-called segmented timber shells approximate curved geometries with the use of planar plates, thus combining the excellent structural performance of double curved shells with the resource-efficient prefabrication of timber modules using only planar elements. Segmented timber shells constitute a novel building system that demands for innovative approaches on structural design and construction technologies. The geometric complexity of plate shells in conjunction with the particularities of the building material wood pose great challenges to the computational design and planning processes as structural requirements and fabrication constraints determine the shell design at early design phases. This paper discusses the design development and construction of the BUGA Wood Pavilion: A segmented timber shell structure made of hollow cassette components. Particular emphasis lies on the technical challenges of the employed building system, notably structural design and analysis, detailing solutions and the construction process. The authors further describe the integrative structural design and optimization methods developed for the timber shell in question. The BUGA Wood Pavilion demonstrates the possibilities of lightweight and sustainable wood architecture merging the merits of integrative design, structural engineering and high-tech robotic fabrication methods.
Online Access
Free
Resource Link
Less detail

Modelling of moment transmitting beam-to-column timber connections accounting for frictional transmission

https://research.thinkwood.com/en/permalink/catalogue2852
Year of Publication
2021
Topic
Design and Systems
Material
Other Materials
Application
Shell Structures
Author
Bechert, Simon
Sonntag, Daniel
Aldinger, Lotte
Knippers, Jan
Organization
University of Stuttgart
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
Other Materials
Application
Shell Structures
Topic
Design and Systems
Keywords
Plate shells
Optimization
Robotic Fabrication
Modular
Integrative design
Computational Design
Research Status
Complete
Series
Structures
Summary
The presented research describes the holistic development of a modular lightweight timber shell. So-called segmented timber shells approximate curved geometries with the use of planar plates, thus combining the excellent structural performance of double curved shells with the resource-efficient prefabrication of timber modules using only planar elements. Segmented timber shells constitute a novel building system that demands for innovative approaches on structural design and construction technologies. The geometric complexity of plate shells in conjunction with the particularities of the building material wood pose great challenges to the computational design and planning processes as structural requirements and fabrication constraints determine the shell design at early design phases. This paper discusses the design development and construction of the BUGA Wood Pavilion: A segmented timber shell structure made of hollow cassette components. Particular emphasis lies on the technical challenges of the employed building system, notably structural design and analysis, detailing solutions and the construction process. The authors further describe the integrative structural design and optimization methods developed for the timber shell in question. The BUGA Wood Pavilion demonstrates the possibilities of lightweight and sustainable wood architecture merging the merits of integrative design, structural engineering and high-tech robotic fabrication methods.
Online Access
Free
Resource Link
Less detail

Shell Structures for Architecture

https://research.thinkwood.com/en/permalink/catalogue1156
Year of Publication
2014
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Shell Structures
Editor
Adriaenssens, Sigrid
Block, Philippe
Veenendaal, Diederik
Williams, Chris
Publisher
Taylor&Francis Group
Year of Publication
2014
Format
Book/Guide
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Shell Structures
Topic
Design and Systems
Research Status
Complete
Summary
Bringing together experts from research and practice, Shell Structures for Architecture: Form Finding and Optimization presents contemporary design methods for shell and gridshell structures, covering form-finding and structural optimization techniques. It introduces architecture and engineering practitioners and students to structural shells and provides computational techniques to develop complex curved structural surfaces, in the form of mathematics, computer algorythms, and design case studies.
Online Access
Payment Required
Resource Link
Less detail

Shell Structures in Wood

https://research.thinkwood.com/en/permalink/catalogue19
Year of Publication
2015
Topic
Market and Adoption
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Shell Structures
Author
Cheng, Alexandra
Meyboom, AnnaLisa
Hunter, Jessica
Neumann, Oliver
Cloutier, Roy
Maia, Sara
Gaudin, Thomas
Tannert, Thomas
Organization
University of British Columbia
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shell Structures
Topic
Market and Adoption
Design and Systems
Keywords
Design
Research Status
Complete
Summary
The larger intention of this research and the future research trajectory is to expand the conception of wood as a structural building material, encouraging its broader use both within Canada and in emerging markets. When architects and engineers desire a...
Online Access
Free
Resource Link
Less detail

Timber Shell: Wood in Building

https://research.thinkwood.com/en/permalink/catalogue264
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Shell Structures
Author
Neumann, Oliver
Hunter, Jessica
Meyboom, AnnaLisa
Cheng, Alex
Tannert, Thomas
Publisher
American Research Institute for Policy Development
Year of Publication
2015
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shell Structures
Topic
Design and Systems
Keywords
Prototype
Research Status
Complete
Series
Journal of Engineering and Architecture
Summary
Contemporary design technology has given architects the ability to imagine and visualize complex structures to an extent that is currently beyond our ability to effectively fabricate and build. The described research is intended to mediate between the imagination of the designer and the current modes of construction; this project is part of a larger proposition to use wood as a sustainably sourced material that can be formed, curved and machined to create new digitally produced and tested formations. TimberShell creates prototypes for full-scale timber monocoque structures. Material computation affords us the ability to use the natural bending properties of wood to both bend components into shape and to create a robust load carrying structure once individual wood components are locked in by lamination. The geometry of the shell panel eliminates twisting. The research shows how doubly-curved timber shells that can be applied in either tension or compression. The panels can be used to create and cover spanning structures such as pools, gyms and auditoriums.
Online Access
Free
Resource Link
Less detail

Towards digital automation flexibility in large-scale timber construction: integrative robotic prefabrication and co-design of the BUGA Wood Pavilion

https://research.thinkwood.com/en/permalink/catalogue2862
Year of Publication
2020
Topic
Design and Systems
Site Construction Management
Material
LVL (Laminated Veneer Lumber)
Application
Shell Structures
Author
Wagner, Hans Jakob
Alvarez, Martin
Groenewolt, Abel
Menges, Achim
Organization
University of Stuttgart
Publisher
Springer
Year of Publication
2020
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Shell Structures
Topic
Design and Systems
Site Construction Management
Keywords
Robotic Timber Construction
Computational Design
Construction Automation
Robotic Construction Management
Research Status
Complete
Series
Construction Robotics
Summary
This paper discusses the digital automation workflows and co-design methods that made possible the comprehensive robotic prefabrication of the BUGA Wood Pavilion—a large-scale production case study of robotic timber construction. Latest research in architectural robotics often focuses on the advancement of singular aspects of integrated digital fabrication and computational design techniques. Few researchers discuss how a multitude of different robotic processes can come together into seamless, collaborative robotic fabrication workflows and how a high level of interaction within larger teams of computational design and robotic fabrication experts can be achieved. It will be increasingly important to discuss suitable methods for the management of robotics and computational design in construction for the successful implementation of robotic fabrication systems in the context of the industry. We present here how a co-design approach enabled the organization of computational design decisions in reciprocal feedback with the fabrication planning, simulation and robotic code generation. We demonstrate how this approach can implement direct and curated reciprocal feedback between all planning domains—paving the way for fast-paced integrative project development. Furthermore, we discuss how the modularization of computational routines simplify the management and computational control of complex robotic construction efforts on a per-project basis and open the door for the flexible reutilization of developed digital technologies across projects and building systems.
Online Access
Free
Resource Link
Less detail

11 records – page 1 of 2.