A. Shop Drawings and Details for Tests
B. Sound and Impact Test Results Summary
C. Test 1: Sound and Impact Transmission Test - CLT
D. Test 2: Sound and Impact Transmission Test - Concrete Topping
E. Test 3a: Sound and Impact Transmission Test - Marmoleum
F. Test 3b: Sound and Impact Transmission Test - Marmoleum
G. Test 4: Sound and Impact Transmission Test - Carpet
H. Test 5a: Sound and Impact Transmission Test - Luxury Vinyl Plank
I. Test 5b: Sound and Impact Transmission Test - Luxury Vinyl Plank
J. Test 6: Sound and Impact Transmission Test - Mechanical Roof
Contact: Thomas Miller, Oregon State University, thomas.miller@oregonstate.edu
Abstract
Understanding how roof and floor systems (commonly called diaphragms by engineers) that are built from Pacific Northwest-sourced cross-laminated timber (CLT) panels perform in earthquake prone areas is a critical area of research. These building components are key to transferring normal and extreme event forces into walls and down to the foundation. The tests performed in this project will provide data on commonly used approaches to connecting CLT panels within a floor or roof space and the performance of associated screw fasteners. Structural engineers will directly benefit through improved modeling tools. A broader benefit may be increased confidence in the construction of taller wood buildings in communities at greater risk for earthquakes.
Cross-laminated timber (CLT) was developed in Europe for the prefabricated construction of wall, roof, and flooring elements. Adaption of CLT for use in the United States requires consideration of the different climates, building codes, and construction methods in this country. ... This Chapter provides guidance on hear, air, and moisture control in wall and roof assemblies that utilize CLT panels in U.S. climate zones. The overarching strategies are to prevent wetting of CLT panels by using drained wall systems, to control airflow using an air barrier on the exterior of the CLT panels, to place rigid insulation to the exterior of the panels, to prevent moisture from accumulating within the panels, and to allow the panels to dry should they get wet. In certain climates, preservative treatment of CLT is recommended to provide additional protection against potential hazards such as decay and termites. ...
The two-way action of Cross Laminated Timber (CLT) is often ignored in the design of CLT due to its complexity. But in some cases, for example, large span timber floor/roof, the benefit of taking the two-way action into account may be considerable since it is often deflection controlled in the design...
Design, Fabrication and Operation Proposals for Glued-Laminated Timber, Based on Measuring and Modelling Results, Chapter 1: Literature Review and the Results of Examinations of the Spoil of the Glue Laminated Timber Beams
Report is currently not available due to the redevelopment of FPInnovations' publications website.
Abstract
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying too slowly after they become wet during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive...
The Wood Innovation and Design Centre (WIDC) in Prince George, British Columbia, with 6 tall storeys and a total height of 29.5 m, provided a unique opportunity for non-destructive testing and monitoring to measure the ‘As Built’ performance of a relatively tall mass timber building. The mass timber structural system consists of glulam columns and beams with cross laminated timber (CLT)...