Skip header and navigation

57 records – page 1 of 6.

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Gilbert, Colin
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Summary
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail

Analysis of Rotational Stiffness of the Timber Frame Connection

https://research.thinkwood.com/en/permalink/catalogue2763
Year of Publication
2020
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Johanides, Marek
Kubíncová, Lenka
Mikolášek, David
Lokaj, Antonín
Sucharda, Oldrich
Mynarcík, Petr
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Connections
Keywords
Rotational Stiffness
Frame Connection
Screw
Numerical Model
FEM
Finite Element Model
Mechanical Fasteners
Language
English
Research Status
Complete
Series
Sustainability
Summary
Initially, timber was considered only as an easily accessible and processable material in nature; however, its excellent properties have since become better understood. During the discovery of new building materials and thanks to new technological development processes, industrial processing technologies and gradually drastically decreasing forest areas, wood has become an increasingly neglected material. Load-bearing structures are made mostly of reinforced concrete or steel elements. However, ecological changes, the obvious problems associated with environmental pollution and climate change, are drawing increasing attention to the importance of environmental awareness. These factors are attracting increased attention to wood as a building material. The increased demand for timber as a building material offers the possibility of improving its mechanical and physical properties, and so new wood-based composite materials or new joints of timber structures are being developed to ensure a better load capacity and stiffness of the structure. Therefore, this article deals with the improvement of the frame connection of the timber frame column and a diaphragm beam using mechanical fasteners. In common practice, bolts or a combination of bolts and pins are used for this type of connection. The subject of the research and its motivation was to replace these commonly used fasteners with more modern ones to shorten and simplify the assembly time and to improve the load capacity and rigidity of this type of frame connection.
Online Access
Free
Resource Link
Less detail

Analytical Model to Evaluate the Equivalent Viscous Damping of Timber Structures with Dowel-Type Fastener Connections

https://research.thinkwood.com/en/permalink/catalogue1893
Year of Publication
2012
Topic
Connections
Application
Frames

Braced Frame System for Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2527
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Author
Iqbal, Asif
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Topic
Design and Systems
Seismic
Keywords
Lateral Load Resisting Systems
Sustainability
Post-Tensioned
Connections
Braced Frame Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Online Access
Free
Resource Link
Less detail

Buckling-restrained Braced Frames for Seismically Resilient Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2571
Topic
Seismic
Wind
Application
Frames
Organization
University of Utah
Country of Publication
United States
Application
Frames
Topic
Seismic
Wind
Keywords
Buckling Restrained Brace Frames
Resilient Building Design
Mass Timber
Energy Dissipation
Monitoring
Research Status
In Progress
Notes
Project contact is Chris Pantelides at the University of Utah
Summary
A mass timber buckling-restrained braced frame is proposed to enhance the seismic resilience of mass timber buildings. Constructed using wood generated from the national forest system, the mass timber buckling-restrained brace will be integrated with a mass timber frame for structural energy dissipation under seismic or wind loads. The team will improve and optimize the design of structural components based on feedback from a real-time health monitoring system. Outcomes include guidelines for a lateral force resisting system of mass timber buildings in high seismic or wind regions.
Less detail

Combination of Steel Plate Shear Walls and Timber Moment Frames for Improved Seismic Performance

https://research.thinkwood.com/en/permalink/catalogue2735
Year of Publication
2020
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Frames
Author
Iqbal, Asif
Todorov, Borislav
Billah, Muntasir
Year of Publication
2020
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Frames
Topic
Seismic
Keywords
Timber Moment Frames
Steel Plate Shear Walls
Hybrid
Seismic Performance
Interstory Drifts
Language
English
Conference
World Conference on Earthquake Engineering
Research Status
Complete
Summary
Recent interests in adopting sustainable materials and developments in construction technology have created a trend of aiming for greater heights with timber buildings. With the increased height these buildings are subjected to higher level of lateral load demand. A common and efficient way to increase capacity is to use shearwalls, which can resist significant part of the load on the structures. Prefabricated mass timber panels such as those made of Cross-Laminated Timber (CLT) can be used to form the shearwalls. But due to relatively low stiffness value of timber it is often difficult to keep the maximum drifts within acceptable limit prescribed by building codes. It becomes necessary to either increase wall sizes to beyond available panel dimensions or use multiple or groups of walls spread over different locations over the floor plan. Both of the options are problematic from the economic and functional point of view. One possible alternative is to adopt a Hybrid system, using Steel Plate Shear Walls (SPSW) with timber moment frames. The SPSW has much higher stiffness and combined with timber frames it can reduce overall building drifts significantly. Frames with prefabricated timber members have considerable lateral load capacity. For structures located in seismic regions the system possesses excellent energy dissipation ability with combination of ductile SPSW and yielding elements within the frames. This paper investigates combination of SPSW with timber frames for seismic applications. Numerical model of the system has been developed to examine the interaction between the frames and shear walls under extreme lateral load conditions. Arrangements of different geometries of frames and shear walls are evaluated to determine their compatibility and efficiency in sharing lateral loads. Recommendations are presented for optimum solutions as well as practical limits of applications.
Online Access
Free
Resource Link
Less detail

Connections with Threaded Rods in Moment Resisting Frames

https://research.thinkwood.com/en/permalink/catalogue1495
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Frames
Author
Arne Malo, Kjell
Stamatopoulos, Haris
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Frames
Topic
Mechanical Properties
Connections
Keywords
Moment Resistance
Threaded Rods
Beam Column Connection
Rotational Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 200-208
Summary
Building owners often state requirements that new buildings shall have open and flexible architecture in order to allow flexible use and future changes. A way to improve timber buildings in that direction is to increase the stiffness of the connections between horizontal and vertical members of the structural systems. This paper presents some numerical and analytical considerations with respect to the stiffness requirements for moment resisting timber connections. It also presents experimental tests and results for a moment resisting connection with inclined threaded rods installed in predrilled holes.
Online Access
Free
Resource Link
Less detail

Construction and Testing of Glued Laminated Timber Frames For Use in Laying Poultry Houses

https://research.thinkwood.com/en/permalink/catalogue2588
Year of Publication
2020
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems
Author
Stringari, Eduardo
Petrauski, Alfredo
Petrauski, Sandra
Azevedo, Ricardo
Savaris, Gustavo
Publisher
SciELO
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Wood Building Systems
Topic
Design and Systems
Keywords
Adhesive
Structural Behavior
Rural Buildings
Araucaria angustifolia
Language
English
Research Status
Complete
Series
Engenharia Agrícola
Summary
This study aimed to present a solution in glued laminated timber to replace frame structures built in reinforced concrete and metallic structure, which are common in agricultural buildings in western Paraná such as those destined to laying poultry house building by agricultural cooperatives. Structural behavior of frames build from Araucaria angustifolia glued boards and vegetable oil-based polyurethane adhesive was evaluated. Tests were carried out to characterize wood and adhesive to obtain verification/sizing parameters. Initially, a full-scale structural project was conducted to meet standard laying poultry house specifications. Afterwards, five units of straight three-articulated frames on a 1:2.5 reduced scale were designed, built, and subjected to strength tests until breaking. They were built with a 2-meter free span and a 15° slope, suitable for using metal roof tiles. The average for structure ultimate strength was 4.14 times the design load. Structures had satisfactory mechanical performance and displacements lower than those recommended by NBR 7190 (1997) standard (ABNT). Therefore, building glued frames with Parana pine boards and vegetable oil-based glue is technically feasible.
Online Access
Free
Resource Link
Less detail

Design of a "Mass-Timber" Building with Different Seismic Bracing Technologies

https://research.thinkwood.com/en/permalink/catalogue1900
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Author
Fini, Giulio
Pozza, Luca
Loss, Cristiano
Tannert, Thomas
Publisher
ANIDIS Earthquake Engineering in Italy
Year of Publication
2017
Country of Publication
Italy
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Topic
Seismic
Keywords
Timber Frames
Prefabrication
Seismic Performance
Language
English
Conference
17th ANIDIS Conference
Research Status
Complete
Notes
September 17-21, 2017, Pistoia, Italy
ISBN
978-886741-8541
ISSN
2532-120X
Online Access
Free
Resource Link
Less detail

Development and Testing of an Alternative Dissipative Posttensioned Rocking Timber Wall with Boundary Columns

https://research.thinkwood.com/en/permalink/catalogue1884
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Frames
Walls

57 records – page 1 of 6.