Skip header and navigation

14 records – page 1 of 2.

Characterizing and Quantifying Environmental and Economic Benefits of Cross Laminated Timber Buildings across the U.S.

https://research.thinkwood.com/en/permalink/catalogue2564
Topic
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Colorado School of Mines
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Cost
Energy Performance
Keywords
Numerical Analysis
Whole Building Energy Model
Building Envelope
Monitoring
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Paulo Tabares at the Colorado School of Mines
Summary
Cross Laminated Timber (CLT) is a mass timber material that has the potential to expand the wood building market in the U.S. However, new sustainable building technologies need extensive field and numerical validation quantifying environmental and economic benefits of using CLT as a sustainable building material so it can be broadly adopted in the building community. These benefits will also be projected nationwide across the United States once state-of-the-art software is validated and will include showcasing and documenting synergies between multiple technologies in the building envelope and heating, ventilation and air conditioning (HVAC) systems. However, there are no such studies for CLT. The objective of this project is to quantify and showcase environmental and economic benefits of CLT as a sustainable building material in actual (and simulated) commercial buildings across the entire United States by doing: (1) on-site monitoring of at least four CLT buildings, (2) whole building energy model validation, (3) optimization of the performance and design for CLT buildings and (4) comparison with traditional building envelopes. This knowledge gap needs to be filled to position CLT on competitive grounds with steel and concrete and is the motivation for this study.
Less detail

Developing an Application for Mass Plywood Panels in Seismic and Energy Wall Retrofit

https://research.thinkwood.com/en/permalink/catalogue2568
Topic
Energy Performance
Seismic
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Organization
University of Oregon
Oregon State University
TallWood Design Institute
Country of Publication
United States
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Topic
Energy Performance
Seismic
Keywords
Retrofit
Assembly
Prefabrication
Research Status
In Progress
Notes
Project contact is Mark Fretz at the University of Oregon
Summary
University of Oregon and Oregon State University are collaborating through TallWood Design Institute (TDI) to upgrade aging, energy inefficient and seismically unprepared multifamily housing by developing a mass plywood (MPP) retrofit panel assembly that employs digital workflows and small diameter logs (down to 5") to create an economically viable energy/seismic retrofit model for the West Coast and beyond. The project has broad potential to support forested federal land management agencies and private forestry by proving a new market for small diameter logs.
Less detail

Effects of Climate Change on the Moisture Performance of Tallwood Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2771
Year of Publication
2021
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Author
Defo, Maurice
Lacasse, Michael
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Walls
Topic
Moisture
Keywords
Climate Change
Hygrothermal Simulations
Moisture Performance
Durability
Mold Growth Risk
Language
English
Research Status
Complete
Series
Buildings
Summary
The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of massive timber walls on the basis of results derived from hygrothermal simulations. One-dimensional simulations were run using DELPHIN 5.9.4 for 31 consecutive years of the 15 realizations of the modeled historical (1986–2016) and future (2062–2092) climates of five cities located across Canada. For all cities, water penetration in the wall assembly was assumed to be 1% wind-driven rain, and the air changes per hour in the drainage cavity was assumed to be 10. The mold growth index on the outer layer of the cross-laminated timber panel was used to compare the moisture performance for the historical and future periods. The simulation results showed that the risk of mold growth would increase in all the cities considered. However, the relative change varied from city to city. In the cities of Ottawa, Calgary and Winnipeg, the relative change in the mold growth index was higher than in the cities of Vancouver and St. John’s. For Vancouver and St. John’s, and under the assumptions used for these simulations, the risk was already higher under the historical period. This means that the mass timber walls in these two cities could not withstand a water penetration rate of 1% wind-driven rain, as used in the simulations, with a drainage cavity of 19 mm and an air changes per hour value of 10. Additional wall designs will be explored in respect to the moisture performance, and the results of these studies will be reported in a future publication. View Full-Text
Online Access
Free
Resource Link
Less detail

Enable the Use of Mass Timber Products for Non-Residential Buildings in High Velocity Hurricane Zone

https://research.thinkwood.com/en/permalink/catalogue2630
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Clemson University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Wind
Keywords
High Velocity Hurricane Zone
Wind Load
Debris Impact Testing
Non-Residential
Commercial Buildings
Research Status
In Progress
Notes
Project contact is Weichiang Pang at Clemson University
Summary
The overall goal of this project is to enable the use of cross laminated timber (CLT) to construct commercial and other non-residential buildings in High Velocity Hurricane Zone (HVHZ). The 1992 Hurricane Andrew exposed the shortcomings of existing building codes. Recognizing this shortcomings, the Florida Building Code (FBC) incorporated new enhanced provisions which specifically require that the entire building envelope, including the wall and roof systems, must be impact resistant in HVHZ. Currently, CLT is not in the database of a list of building envelope products that comply with the HVHZ standard. The specific objectives of this project are (1) to qualify PRG-320 compliance CLT panels for HVHZ standard by conducting FBC debris impact and wind pressure cyclic tests; (2) to conduct education and outreach sessions to promote the use of CLT in HVHZ, and (3) to identify possible construction projects that may utilize CLT as the building envelope and promote the use of CLT in those projects. The test results generated in this project will be used specifically to gain HVHZ building code approval.
Less detail

Energy Performance Evaluation of a Ventilated Façade System through CFD Modeling and Comparison with International Standards

https://research.thinkwood.com/en/permalink/catalogue2777
Year of Publication
2021
Topic
Energy Performance
Material
Timber-Concrete Composite
Application
Building Envelope
Author
Pastori, Sofia
Mereu, Riccardo
Mazzucchelli, Enrico
Passoni, Stefano
Dotelli, Giovanni
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
Timber-Concrete Composite
Application
Building Envelope
Topic
Energy Performance
Keywords
Ventilation
Ventilated Façades
Performance
Thermo-Fluid Dynamic Analysis
Energy Efficiency
Natural Ventilation
Language
English
Research Status
Complete
Series
Energies
Summary
Ventilated façades can help to reduce summer building thermal loads and, therefore, energy consumption due to air-conditioning systems thanks to the combined effect of the solar radiation reflection and the natural or forced ventilation into the cavity. The evaluation of ventilated façades behavior and performance is complex and requires a complete thermo-fluid dynamic analysis. In this study, a computational fluid dynamic (CFD) methodology has been developed for the complete assessment of the energy performance of a prefabricated timber–concrete composite ventilated façade module in different operating conditions. Global numerical results are presented as well as local ones in terms of heat flux, air velocity, and temperature inside the façade cavity. The results show the dependency of envelope efficiency on solar radiation, the benefits that natural convection brings on potential energy savings and the importance of designing an optimized façade geometry. The results concerning the façade behavior have been thoroughly compared with International Standards, showing the good accuracy of the model with respect to these well-known procedures. This comparison allowed also to highlight the International Standards procedures limits in evaluating the ventilated façade behavior with the necessary level of detail, with the risk of leading to design faults.
Online Access
Free
Resource Link
Less detail

Environmental Consideration of the Building Envelope in Wood Projects - Materials and LCA Approach

https://research.thinkwood.com/en/permalink/catalogue2672
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Organization
Université Laval
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Environmental Impact
Energy Performance
Keywords
Life Cycle Analysis
Energy Efficiency
Curtain Wall
Research Status
In Progress
Notes
Project contact is Pierre Blanchet at Université Laval
Summary
The work of Lessard et al. (2017) demonstrated that the building envelope was an important system in the building in terms of environmental impact, but only took into account the external components of the building envelope. This project will perform a life cycle analysis of the main building envelopes for a typical building under commercial construction. By relying on our design partners, the main systems and associated materials will be analyzed in a cradle-to-grave approach. It is desirable to identify hot spots and to indicate avenues for product development in order to reduce the envelope's environmental footprint. Among the scenarios to be considered: light framework, CLT, curtain walls and all their possible variants, but also commonly used non-biobased systems. The comparison between the systems studied will be based on an equivalent energy efficiency performance.
Resource Link
Less detail

Evolution of the Building Envelope in Modern Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1799
Year of Publication
2017
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Keywords
Energy Efficiency
Building Envelope
Tall Wood
Wood Infill Walls
Podium Structures
Articulated Buildings
Language
English
Research Status
Complete
Summary
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
Online Access
Free
Resource Link
Less detail

High-Rise Wood Building Enclosures

https://research.thinkwood.com/en/permalink/catalogue2349
Year of Publication
2016
Topic
Moisture
Energy Performance
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope

Hygrothermal Characterization and Modeling of Cross-Laminated Timber in the Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2562
Year of Publication
2020
Topic
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Kordziel, Steven
Glass, Samuel
Boardman, Charles
Munson, Robert
Zelinka, Samuel
Pei, Shiling
Tabares-Velasco, Paulo
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Design and Systems
Keywords
Building Envelope
Hygrothermal Modeling
Moisture Performance
Water Uptake
Hygric Redistribution
Language
English
Research Status
Complete
Series
Building and Environment
Summary
Cross-laminated timber (CLT) is a type of mass timber panel used in floor, wall, and roof assemblies. An important consideration in design and construction of timber buildings is moisture durability. This study characterized the hygrothermal performance of CLT panels with laboratory measurements at multiple scales, field measurements, and modeling. The CLT panels consisted of five layers, four with spruce-pine-fir lumber and one with Douglas-fir lumber. Laboratory characterization involved measurements on small specimens that included material from only one or two layers and large specimens that included all five layers of the CLT panel. Water absorption was measured with panel specimens partially immersed in water, and a new method was developed where panels were exposed to ponded water on the top surface. This configuration gave a higher rate of water uptake than the partial immersion test. The rate of drying was much slower when the wetted surface was covered with an impermeable membrane. Measured hygrothermal properties were implemented in a one-dimensional transient hygrothermal model. Simulation of water uptake indicated that vapor diffusion had a significant contribution in parallel with liquid transport. A simple approximation for liquid transport coefficients, with identical coefficients for suction and redistribution, was adequate for simulating panel-scale wetting and drying. Finally, hygrothermal simulation of a CLT roof assembly that had been monitored in a companion field study showed agreement in most cases within the sensor uncertainty. Although the hygrothermal properties are particular to the wood species and CLT panels investigated here, the modeling approach is broadly applicable.
Online Access
Free
Resource Link
Less detail

Illustrated Guide for Designing Wood-Frame Buildings in Alberta to Meet the National Energy Code of Canada for Buildings

https://research.thinkwood.com/en/permalink/catalogue1917
Year of Publication
2019
Topic
Design and Systems
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Book/Guide
Application
Building Envelope
Topic
Design and Systems
Keywords
Building Codes
Energy Efficiency
Mid-Rise
Thermal
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

14 records – page 1 of 2.