Skip header and navigation

Refine Results By

39 records – page 2 of 4.

The Environmental Impact of Reused CLT Panels: Study of a Single-Storey Commercial Building In Japan

https://research.thinkwood.com/en/permalink/catalogue2377
Year of Publication
2018
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Passarelli, Rafael
Year of Publication
2018
Country of Publication
Korea
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Energy Performance
Design and Systems
Keywords
Global Warming Potential
Commercial
Panels
Carbon
Design for Reuse
Timber Cascade
Life-Cycle Assessment
LCA
Construction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The study investigates the environmental benefits of reusing Cross Laminated Timber (CLT) panels. The Global Warming Potential (GWP) of a single-stored Coffee shop built in 2016 in Kobe city was calculated, considering different CLT reuse ratios, forest land-use and material substitution possibilities. The results showed that as the rate of reused CLT panel increases the total GWP decreases. Moreover, in all cases, the option with smallest GWP is when the surplus wood is used for carbon storage in the forest, revealing the importance of a growing forest for increasing the environmental benefits of timber utilisation. The results suggest the systematic reuse of CLT panels offers a possibility to increase the carbon stock of Japanese Cedar plantation forests and further mitigate the environmental impact of construction.
Online Access
Free
Resource Link
Less detail

A Framework for Assessing the Environmental Benefits of Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue1185
Year of Publication
2017
Topic
Market and Adoption
Environmental Impact
Application
Wood Building Systems
Author
Crawford, Robert
Cadorel, Xavier
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Application
Wood Building Systems
Topic
Market and Adoption
Environmental Impact
Keywords
Construction
Environmental Benefits
Renewable Materials
Language
English
Research Status
Complete
Series
Procedia Engineering
Online Access
Free
Resource Link
Less detail

Guide for On-site Moisture Management of Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1968
Year of Publication
2016
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
General Application
Author
Wang, Jieying
Organization
FPInnovations
Publisher
BC Housing Research Centre
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
General Application
Topic
Moisture
Keywords
Moisture Management
Construction
Risk Mitigation
Prefabrication
Multi-Storey
Language
English
Research Status
Complete
Summary
Overall moisture management during construction has become increasingly important due to the increase in building height and area, which potentially prolongs the exposure to inclement weather, and the overall increase in speed of construction, which may not allow adequate time for drying to occur. This report provides guidelines and relevant information about on-site moisture management practices that can be adapted to suit a range of wood construction projects...
Online Access
Free
Resource Link
Less detail

High-Rise Wood Building Enclosures

https://research.thinkwood.com/en/permalink/catalogue2349
Year of Publication
2016
Topic
Moisture
Energy Performance
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope

A Holistic Approach for Industrializing Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2378
Year of Publication
2019
Topic
Site Construction Management
Design and Systems
Material
Timber (unspecified)
Application
Wood Building Systems
Author
Santana-Sosa, Aída
Fadai, Alireza
Year of Publication
2019
Country of Publication
Austria
Format
Conference Paper
Material
Timber (unspecified)
Application
Wood Building Systems
Topic
Site Construction Management
Design and Systems
Keywords
Prefabrication
Off-site Construction
BIM
Mass Timber
Construction
Carbon
Language
English
Conference
Sustainable Built Environment D-A-CH Conference
Research Status
Complete
Summary
Many strategies have been investigated seeking for efficiency in construction sector, since it has been pointed out as the largest consumer of raw materials worldwide and responsible of about 1/3 of the global CO2 emissions. While operational carbon has been strongly reduced due to building regulations, embodied carbon is becoming dominating. Resources and processes involved from material extraction to building erection should be carefully optimized aiming to reduce the emissions from the cradle to service. New advancements in timber engineering have shown the capabilities of this renewable and CO2 neutral material in multi-storey buildings. Since their erection is based on prefabrication, an accurate construction management is eased where variations and waste are sensible to be minimized. Through this paper, the factors constraining the use of wood as main material for multi-storey buildings will be explored and the potential benefits of using Lean Construction principles in the timber industry are highlighted aiming to achieve a standardized workflow from design to execution. Hence, a holistic approach towards industrialization is proposed from an integrated BIM model, through an optimized supply chain of off-site production, and to a precise aligned scheduled on-site assembly.
Online Access
Free
Resource Link
Less detail

Identifying Mass Timber Research Priorities, Barriers to Adoption and Engineering, Procurement and Construction Challenges In Canada

https://research.thinkwood.com/en/permalink/catalogue2372
Year of Publication
2020
Topic
Market and Adoption
Material
Timber (unspecified)
Application
Wood Building Systems
Author
Syed, Taha
Publisher
University of Toronto
Year of Publication
2020
Country of Publication
Canada
Format
Thesis
Material
Timber (unspecified)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Mass Timber
Barriers
Research Priorities
Challenges
Construction
Engineering
Procurement
Language
English
Research Status
Complete
Summary
Mass timber construction in Canada is in the spotlight and emerging as a sustainable building system that offers an opportunity to optimize the value of every tree harvested and to revitalize a declining forest industry, while providing climate mitigation solutions. Little research has been conducted, however, to identify the mass timber research priorities of end users, barriers to adoption and engineering, procurement and construction challenges in Canada. This study helps bridge these gaps. The study also created an interactive, three-dimensional GIS map displaying mass timber projects across North America, as an attempt to offer a helpful tool to practitioners, researchers and students, and fill a gap in existing knowledge sharing. The study findings, based on a web-based survey of mass timber end users, suggest the need for more research on (a) total project cost comparisons with concrete and steel, (b) hybrid systems and (c) mass timber building construction methods and guidelines. The most important barriers for successful adoption are (a) misconceptions about mass timber with respect to fire and building longevity, (b) high and uncertain insurance premiums, (c) higher cost of mass timber products compared to concrete and steel, and (d) resistance to changing from concrete and steel. In terms of challenges: (a) building code compliance and regulations, (b) design permits and approvals, and (c) insufficient design experts in the market are rated by study participants as the most pressing “engineering” challenge. The top procurement challenges are (a) too few manufactures and suppliers, (b) long distance transportation, and (c) supply and demand gaps. The most important construction challenges are (a) inadequate skilled workforce, (b) inadequate specialized subcontractors, and (c) excessive moisture exposure during construction.
Online Access
Free
Resource Link
Less detail

Innovation in Hybrid Mass Timber High-Rise Construction: A Case Study of UBC’s Brock Commons Project

https://research.thinkwood.com/en/permalink/catalogue1273
Year of Publication
2017
Topic
General Information
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems

Innovative Composite Steel-Timber Floors with Prefabricated Modular Components

https://research.thinkwood.com/en/permalink/catalogue1350
Year of Publication
2017
Topic
Connections
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors

Investigating the Performance of the Construction Process of an 18-storey Mass Timber Hybrid Building

https://research.thinkwood.com/en/permalink/catalogue1269
Year of Publication
2017
Topic
General Information
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems

A Literature Review of the State-of-Art in Fire Protection of Mid-Rise Wood Buildings Under Construction

https://research.thinkwood.com/en/permalink/catalogue1949
Year of Publication
2016
Topic
Fire
Site Construction Management
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

39 records – page 2 of 4.