Skip header and navigation

13 records – page 1 of 2.

WoodWorks Index of Mass Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2876
Year of Publication
2021
Topic
Connections
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
MPP (Mass Plywood Panel)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Organization
WoodWorks
Year of Publication
2021
Country of Publication
United States
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
NLT (Nail-Laminated Timber)
MPP (Mass Plywood Panel)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Topic
Connections
Keywords
Aesthetics
Load-Carrying Capacity
Fire Resistance Rating
Quality Assurance
Cost
Constructability
Language
English
Research Status
Complete
Summary
This index is a compilation of connections used in mass timber construction. Mass timber elements are solid wood pieces with inherent fire resistance due to their mass, as defined in the 2021 International Building Code (IBC). Examples of mass timber include but are not limited to cross laminated timber (CLT), dowel-laminated timber (DLT), nail-laminated timber (NLT), glue-laminated timber (GLT), mass plywood panels (MPP), and structural composite lumber (SCL) products such as laminated veneer lumber (LVL) and laminated strand lumber (LSL). Mass timber can be used as structural floors, roofs, walls, columns and/or beams. The examples in this index illustrate a broad spectrum of connections for use in mass timber construction. Depending on the unique constraints of each project, the connection choice made by the designer may be influenced by aesthetics, load carrying capacity, fire-rating requirements, quality assurance requirements, cost and/or constructability. The purpose of the index is to facilitate the designer’s selection of project appropriate connections.
Online Access
Free
Resource Link
Less detail

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue2639
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Floors
Walls

Mass-Timber Construction in Australia: Is CLT the Only Answer?

https://research.thinkwood.com/en/permalink/catalogue2727
Year of Publication
2020
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Author
McGavin, Robert
Dakin, Tony
Shanks, Jon
Publisher
North Carolina State University
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Veneer
Mass Panel
Mass Plywood
Construction
Australia
Language
English
Research Status
Complete
Series
BioResources
Summary
Wood-based mass-panels (WBMP) are emerging as an attractive construction product for large-scale residential and commercial construction. Australia is following the lead of Europe and North America with several recent projects being completed using predominately cross-laminated timber panels (CLT). These sawn timber-based panels offer some key advantages to the construction and sawmilling industry. However, veneer-based mass-panel (VBMP) systems could offer additional benefits including the more efficient use of the available forest resources to produce WBMPs that have equivalent to superior performance to CLT. Research to confirm the expected technical viability of veneer-based systems is required. VBMPs could provide a valuable contribution, alongside CLT, to the Australian timber products market.
Online Access
Free
Resource Link
Less detail

A Methodological Approach for Structural Health Monitoring of Mass-Timber Buildings Under Construction

https://research.thinkwood.com/en/permalink/catalogue2519
Year of Publication
2020
Topic
Serviceability
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems

Acoustic Lab Testing of CLT and MPP Wall and Floor Assemblies for Multi-Family Residential Application

https://research.thinkwood.com/en/permalink/catalogue2831
Year of Publication
2019
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Walls
Floors
Author
Van Den Wymelenberg, Kevin
Northcutt, Dale
Fretz, Mark
Stenson, Jason
Zagorec-Marks, Ethan
Organization
University of Oregon
Publisher
University of Oregon
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Walls
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Acoustics
Laboratory Tests
Sound Transmission Class
Impact Isolation Class
Insulation
Dry Assembly
Language
English
Research Status
Complete
Summary
Mass timber products are growing in popularity, particularly in multifamily residential dwellings, for which they are structurally well-suited. However, acoustic performance of these products has not been robustly tested, which can be a hindrance to building projects due to lack of code compliance or building performance with poor acoustics. The latter is particularly important since the sound transmission class (STC) rating—a single number used to characterize decibel attenuation—does not characterize an assembly in terms of which frequencies it blocks well or transmits. Wood does a good job of attenuating mid- to high-range frequencies, but not necessarily low ones, such as from a sub-woofer, so testing of assemblies is critical because it elicits their performance in terms of the entire range of frequencies, in addition to defining a single STC rating. This allows for adjustments to be made that balance the acoustic performance of the assembly – such as adding isolation through solutions like air space or concrete topping – with construction cost, sequencing and aesthetics. The other standard acoustic rating, impact insulation class (IIC), accounts for foot-fall and other impact noises and is another critical test for determining code compliance of floor assemblies.
Online Access
Free
Resource Link
Less detail

Development of Timber Buckling-Restrained Braces for Mass Timber Braced Frames

https://research.thinkwood.com/en/permalink/catalogue2199
Year of Publication
2019
Topic
Seismic
Material
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Author
Murphy, Colton
Pantelides, Chris
Blomgren, Hans-Erik
Rammer, Douglas
Year of Publication
2019
Country of Publication
United States
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Wood Building Systems
Topic
Seismic
Keywords
Lateral Force Resisting System
Buckling Restrained Brace Frames
Language
English
Conference
INTER
Research Status
Complete
Summary
Buckling Restrained Brace Frames (BRBF) are a proven and reliable method to provide an efficient lateral force resisting system for new and existing structures in earthquake prone regions. The fuse-type elements in this system facilitate stable energy dissipation at large load deformation levels. Currently, the new trend towards mass timber vertical...
Online Access
Free
Resource Link
Less detail

Design, Construction, and Maintenance of Mass Timber Post-Tensioned Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2791
Topic
Design and Systems
Seismic
Serviceability
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Topic
Design and Systems
Seismic
Serviceability
Keywords
Post-Tensioned
Self-Centering
Shear Walls
Anchoring
Creep
Research Status
In Progress
Notes
Project contact is Mariapaola Riggio at Oregon State University
Summary
Earthquake engineers are focusing on performance-based design solutions that minimize damage, downtime, and dollars spent on repairs by designing buildings that have no residual drift or “leaning” after an event. The development of timber post-tensioned (PT), self-centering rocking shear walls addresses this high-performance demand. The system works by inserting unbonded steel rods or tendons into timber elements that are prestressed to provide a compressive force on the timber, which will pull the structure back into place after a strong horizontal action. But, because these systems are less than fifteen years old with just four real-world applications, little information is known regarding best practices and optimal methods for engineering design, construction and/or tensioning procedures, and long-term maintenance considerations. This project intends to contribute knowledge by testing both cross-laminated timber (CLT) and mass plywood panel (MPP) walls through testing of anchorage detailing, investigating tensioning procedures for construction, determining the contributions of creep on prestress loss over time, and comparing all laboratory test data to monitoring data from three of the four buildings in which this technology has been implemented, one of which is George W. Peavy Hall at Oregon State University. This will be accomplished by testing small- and full-scale specimens in the A.A. “Red” Emmerson Advanced Wood Products Laboratory, and small-scale specimens in an environmental chamber.
Resource Link
Less detail

Developing an Application for Mass Plywood Panels in Seismic and Energy Wall Retrofit

https://research.thinkwood.com/en/permalink/catalogue2568
Topic
Energy Performance
Seismic
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Organization
University of Oregon
Oregon State University
TallWood Design Institute
Country of Publication
United States
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Topic
Energy Performance
Seismic
Keywords
Retrofit
Assembly
Prefabrication
Research Status
In Progress
Notes
Project contact is Mark Fretz at the University of Oregon
Summary
University of Oregon and Oregon State University are collaborating through TallWood Design Institute (TDI) to upgrade aging, energy inefficient and seismically unprepared multifamily housing by developing a mass plywood (MPP) retrofit panel assembly that employs digital workflows and small diameter logs (down to 5") to create an economically viable energy/seismic retrofit model for the West Coast and beyond. The project has broad potential to support forested federal land management agencies and private forestry by proving a new market for small diameter logs.
Less detail

Facilitation of Acoustics Testing for Sustainable Mass Timber Technologies, Leading to Publication of Open Source Acoustics Data for Standard Acoustics Scenarios

https://research.thinkwood.com/en/permalink/catalogue2629
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Organization
University of Oregon
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Acoustics Testing Facility
Research Status
In Progress
Notes
Project contact is Kevin Van Den Wymelenberg at the University of Oregon
Summary
Our aim is to support the acceptance and increase market share of sustainable mass timber construction technologies such as Cross Laminated Timber (CLT), Mass Plywood Panel (MPP), Glue Laminated Timber (GLT), and Nail Laminated Timber (NLT), by lowering or eliminating barriers due to lack of acoustics data for mass timber construction assemblies. Currently, sustainable mass timber projects carry the cost of required acoustics testing, impairing their economic feasibility. With our new acoustics testing facility, testing supported by this grant will produce common acoustics data on the assemblies most in market demand. These data will be hosted in an online open-access database, supporting rapid growth in this industry. Increasingly specialized testing scenarios will be more easily accommodated, as this facility is located closer to USFS source materials and production facilities than currently operating facilities and is designed specifically for the specialized requirements of testing mass timber assemblies. Since sustainable mass timber technologies allow increased utilization of lower quality timber, and timber with insect damage, increasing the market share of mass timber will increase utilization of USFS timber, specifically that which might otherwise remain on-site unused. With removal of this type of timber, fire load will be lessened as well. Initial testing supported by this grant will include mass timber assemblies constructed with lower quality and smaller dimension timber.
Less detail

Innovative Lateral Systems for Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2793
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Topic
Seismic
Keywords
Post-Tensioned
Rocking Walls
Energy Dissipation
Mass Plywood
Experimental Tests
Seismic Force Resisting System
Research Status
In Progress
Notes
Project contacts are Arijit Sinha, Andre Barbosa and Barbara Simpson at Oregon State University
Summary
The results of this proposal will provide guidance on efficient design and analysis strategies for wood building construction including rocking/post-tensioned and pivoting spines, a next-generation seismic force resisting system, for improved performance, safety, sustainability, and economy. The use of wood in tall buildings is limitied by strength and stiffness considerations. The use of CLT and MPP shear walls, supplemented by energy dissipators may be able to aleviate this problem. Several knowledge gaps exist in terms of the performance of mass timber lateral force resisting systems (LFRS), interconnectivity and compatibility between the modules and LFRS-to-gravity system, and potential hybridization of structural materials for the gravity system and LFRS. The recent 2017 two-story shake table test is the only full scale dynamic on rocking CLT LFRS with energy dissipators. Importantly, since MPP panels are also a recent addition in the mass timber industry, no experimental data exist regarding the self-centering performance of post-tensioned MPP wall panels.
Resource Link
Less detail

13 records – page 1 of 2.