Ease of construction and favorable overall costs relative to other construction types are making high-rise (i.e., 4- and 5-story) wood frame construction increasingly popular. With these buildings increasing in height, there is a greater impetus on designers to address frame and finishes movement in such construction. As we all know, buildings are dynamic creatures experiencing a variety of movements during construction and over their service life. In wood frame construction, it is important to consider not only absolute movement but also differential movement between dissimilar materials.
This article focuses on differential movement issues and how to recognize their potential and avoid problems by effective detailing.
Project contact is Peter Dusicka at Portland State University (United States)
Summary
The urgency in increasing growth in densely populated urban areas, reducing the carbon footprint of new buildings, and targeting rapid return to occupancy following disastrous earthquakes has created a need to reexamine the structural systems of mid- to high-rise buildings. To address these sustainability and seismic resiliency needs, the objective of this research is to enable an all-timber material system in a way that will include architectural as well as structural considerations. Utilization of mass timber is societally important in providing buildings that store, instead of generate, carbon and increase the economic opportunity for depressed timber-producing regions of the country. This research will focus on buildings with core walls because those building types are some of the most common for contemporary urban mid- to high-rise construction. The open floor layout will allow for commercial and mixed-use occupancies, but also will contain significant technical knowledge gaps hindering their implementation with mass timber. The research plan has been formulated to fill these gaps by: (1) developing suitable mid- to high-rise archetypes with input from multiple stakeholders, (2) conducting parametric system-level seismic performance investigations, (3) developing new critical components, (4) validating the performance with large-scale experimentation, and (5) bridging the industry information gaps by incorporating teaching modules within an existing educational and outreach framework. Situated in the heart of a timber-producing region, the multi-disciplinary team will utilize the local design professional community with timber experience and Portland State University's recently implemented Green Building Scholars program to deliver technical outcomes that directly impact the surrounding environment.
Research outcomes will advance knowledge at the system performance level as well as at the critical component level. The investigated building system will incorporate cross laminated timber cores, floors, and glulam structural members. Using mass timber will present challenges in effectively achieving the goal of desirable seismic performance, especially seismic resiliency. These challenges will be addressed at the system level by a unique combination of core rocking combined with beam and floor interaction to achieve non-linear elastic behavior. This system behavior will eliminate the need for post-tensioning to achieve re-centering, but will introduce new parameters that can directly influence the lateral behavior. This research will study the effects of these parameters on the overall building behavior and will develop a methodology in which designers could use these parameters to strategically control the building seismic response. These key parameters will be investigated using parametric numerical analyses as well as large-scale, sub-system experimentation. One of the critical components of the system will be the hold-down, a device that connects the timber core to the foundation and provides hysteretic energy dissipation. Strength requirements and deformation demands in mid- to high-rise buildings, along with integration with mass timber, will necessitate the advancement of knowledge in developing this low-damage component. The investigated hold-down will have large deformation capability with readily replaceable parts. Moreover, the hold-down will have the potential to reduce strength of the component in a controlled and repeatable way at large deformations, while maintaining original strength at low deformations. This component characteristic can reduce the overall system overstrength, which in turn will have beneficial economic implications. Reducing the carbon footprint of new construction, linking rural and urban economies, and increasing the longevity of buildings in seismic zones are all goals that this mass timber research will advance and will be critical to the sustainable development of cities moving forward.
AcoustiTECH is a North American leader in acoustic solitions and has quickly become the reference standard in the industry. For 25 years, AcoustiTECH has teamed uo with Architects, builders, general contractors, acoustic consultants and other stakeholders to help them achieve their vision by providing proven acoustical solutions and expertise. AcoustiTECH looks at the specific requirements of each individual project, evaluates the requirements, determines the needs and provides personalized solutions. AcoustiTECH's approach is unique, efficient and reliable. We possess our own acoustic laboratory that we use for our research and development in order to recommend the best acoustic solutions by type of structure. Thousands of tests have been performed inclusing over 300 on heavy timber assemblies.
The principal objective of creating this document is for the professionals to compare and choose from 25 assemblies the ones that suit their needs the best. The most interesting and popular assemblies have been selected and compared side by side in the same environment, built and tested by the same professional unisg the same flooring materials.
It is important to note that the quality of construction can affect the performance. Indeed, construction standards and assemblies recommendations must be followed in order to reach the seeking performance.
Project contact is Jianhui Zhou at the University of Northern British Columbia (Canada)
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of light-weight timber floors, a structural floor was designed and built in laminated veneer lumber (LVL). The floor was evaluated in a laboratory setting based on its behaviour and then modified with suspended ceilings and different floor toppings. Twenty-nine different floor compositions were tested. The bare floor could not reach the minimum requirement set by the Building Code of Australia (BCA) but with additional layers, a sufficient result of R'w+Ctr 53 dB and L’nT,w + CI 50 dB was reached. Doubling of the concrete mass added a marginal improvement. With concrete toppings and suspended ceiling it is possible to reach the goal in airborne and impact sound insulation. The best result was achieved by combining of additional mass and different construction layers.
The growing availability and code acceptance of mass timber—i.e., large solid wood panel products such as cross laminated timber (CLT) and nail-laminated timber (NLT)—for floor, wall and roof construction has given designers a low-carbon alternative to steel, concrete, and masonry for many applications. However, the use of mass timber in multi-family and commercial buildings presents unique acoustic challenges.
While laboratory measurements of the impact and airborne sound isolation of traditional building assemblies such as light wood-frame, steel and concrete are widely available, fewer resources exist that quantify the acoustic performance of mass timber assemblies. Additionally, one of the most desired aspects of mass timber construction is the ability to leave a building’s structure exposed as finish, which createsthe need for asymmetric assemblies. With careful design and detailing, mass timber buildings can meet the acoustic performance expectations of most building types.
This client report on the acoustics research component regarding sound insulation of elements and systems for mid-rise wood buildings is structured into a main part and four appendices. The main part outlines the background, main research considerations and summarizes conducted research and major outcomes briefly. It is structured like the Acoustics tasks in the Statement of Work of the Mid-rise Wood research project to identify accomplishments. For details on the research, testing and results, the main part references to four appendices that contain more details including test plans, test methods, specimen descriptions and all test data that is vetted so far.
Architectural Testing, Inc., an Intertek company (Intertek-ATI), was contracted to conduct airborne sound transmission loss and impact sound transmission tests. The complete test data is included as attachments to this report. The full test specimen was assembled on the day of testing by Intertek-ATI. All materials provided by the client were installed on an existing Intertek-ATI assembly (Cross Laminated Timber - 175 mm) utilizing Intertek-ATI-supplied.
This report contains the transmission loss (TL) results measured in accordance with ASTM E90-09 and the normalized impact sound pressure level (NISPL) results measured in accordance with ASTM E492-09 of 13 cross-laminated timber (CLT) floor assemblies and 5 glulam floor assemblies. The report also contains the nonstandard impact sound pressure level results measured on 6 different small patch specimens.
Summary tables containing the specimen number, sketch, short description, the sound transmission class (STC) and impact isolation class (IIC) ratings, as well as, the page number of the detailed test reports are provided starting on page 5.
A brief analysis of the floors tested as part of this test series is provided after the summary tables on page 9. The standard test reports of the tested floor assemblies begin on page 16. The floor assemblies were built and tested between January and April 2016.
This report is published as an addendum to NRC Research Report RR-335 “Apparent Sound Insulation in Cross-Laminated Timber Buildings." It is intended that this addendum will be merged with RR-335 in the future as a report for predicting the sound insulation in buildings using mass-timber constructions including NLT assemblies. This report presents the results from experimental studies of airborne sound transmission through assemblies of nail-laminated timber (NLT) with various linings. To put the data presented in this report in the proper context, this report begins with a brief explanation of calculation procedures to predict the apparent sound transmission class (ASTC) between adjacent spaces in a building whose structure is a combination of mass-timber assemblies such as nail-laminated timber (NLT) or cross-laminated timber (CLT) panels.
This project aims to support the construction of tall wood buildings by identifying encapsulation methods that provide adequate protection of mass timber elements; the intention is that these methods could potentially be applied to mass timber elements so that the overall assembly could achive a 2 h fire resistance rating.
Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Origine 13-Storey Building for Vibration and Acoustic Performances
Serviceability performance studied covers three different performance attributes of a building. These attributes are 1) vibration of the whole building structure, 2) vibration of the floor system, typically in regards to motions in a localized area within the entire floor plate, and 3) sound insulation performance of the wall and floor assemblies. Serviceability performance of a building is important as it affects the comfort of its occupants and the functionality of sensitive equipment as well. Many physical factors influence these performances. Designers use various parameters to account for them in their designs and different criteria to manage these performances. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings.
In order to bridge the gaps in the data, knowledge, and experience of sound and vibration performance of tall wood buildings, FPInnovations conducted a three-phase performance testing on the Origine 13-storey CLT building of 40.9 m tall in Quebec city. It was the tallest wood building in Eastern Canada in 2017.
For wood floor systems, their vibration performance is significantly dependent on the conditions of their supports, specifically the rigidity of the support. Detrimental effects could result if the floor supports do not have sufficient rigidity. This is special ture for floor supporting beams. The problem of vibrating floor due to flexible supporting beams can be solved through proper design of the supporting beams. However, there is currently no criterion set for the minimum requirement for floor supporting beam stiffness to ensure the beam is rigid enough. Designers’ current practice is to use the uniform load deflection criteria specified in the code for designing the supporting beams. This criterion is based on certain ratios of the floor span (e.g. L/360, L/480 etc.). The disadvantage of this approach is that it allows larger deflections for longer-span beams than for shorter beams. This means that engineers have to use their experience and judgement to select a proper ratio, particularly for the long-span beams. Therefore, a better vibration-controlled design criterion for supporting beams is needed.
It is recommended to further verify the ruggedness of the proposed stiffness criterion for floor supporting beams using new field supporting beam data whenever they become available.
Auburn University’s (AU) School of Forestry and Wildlife Sciences (SFWS) in Alabama actively works to increase awareness of the benefits of CLT along with hybrid systems for more widespread adoption in multiple building segments. AU’s two-year project proposal outlines a plan that will establish a preliminary design for the usage of a timber-steel composite system, utilizing CLT or laminated veneer lumber (LVL), as an option that will replace reinforced concrete slabs to improve the structural performance for buildings six stories or more.
Project contact is Kadir Sener at Auburn University (United States)
Summary
While the emphasis in the timber industry understandably focuses predominately
on complete mass timber structures, opportunities to substantially expand the mass timber
market exist using composite timber-steel systems. Timber-steel composite systems have a
high potential to be an economically, architecturally, and structurally feasible system to
expand the usage of timber panels for mid-rise and high-rise structures where mass timber is
currently not a feasible option. In this novel system, prefabricated timber panels replace
reinforced concrete slabs to provide the floor and diaphragm elements that work compositely
with steel beams and to improve the structural performance compared to either individual
material. Considerable testing effort outside the US has explored the feasibility and benefits
of these composite systems. This has led to implementation of this novel system on a number
of international construction projects. However, the topic has not been assimilated by
researchers and practitioners in the US. Hence, this proposal focuses on identifying and
removing barriers and providing design guidance on using steel-timber composite systems in
US construction. The proposal: (i) Engages a diverse body of stakeholders in an advisory panel
and workshop, (ii) Completes engineering-based testing and analysis to demonstrate
feasibility, (iii) Performs constructability studies (i.e., construction cost, speed, env. impact),
and (iv) Establishes preliminary design guidelines and approaches. The goal of the project will
be to demonstrate the performance and economy of a timber-steel composite system(s) and
establish preliminary design guidelines and approaches for target stakeholders. Ultimately,
the project will develop experimentally validated design-detailing configurations and
establish design specifications for new mass timber markets in multiple construction sectors.
This paper presents an investigation of possible disproportionate collapse for a nine-storey flat-plate timber building, designed for gravity and lateral loads. The alternate load-path analysis method is used to understand the structural response under various removal speeds. The loss of the corner and penultimate ground floor columns are the two cases selected to investigate the contribution of the cross-laminated timber (CLT) panels and their connections, towards disproportionate collapse prevention. The results show that the proposed building is safe for both cases, if the structural elements are removed at a speed slower than 1 sec. Disproportionate collapse is observed for sudden element loss, as quicker removal speed require higher moments resistance, especially at the longitudinal and transverse CLT floor-to-floor connections. The investigation also emphasises the need for strong and stiff column-to-column structural detailing as the magnitude of the vertical downward forces, at the location of the removed columns, increases for quicker removal.
Structure-borne sound transmission across a cross-junction of double solid timber walls with a solid timber floor was analyzed in a recent research project. Both, the double walls as well as floor slab, were of so-called Cross Laminated Timber (CLT). The floor slab was continuous across the junction for structural reasons and thus, formed a sound bridge between the elements of the double wall. To gain a better understanding of the contributions of sound transmission between the wall and floor elements from the different possible paths, a thorough analysis was conducted. Hereby, direct sound transmission through, and radiation efficiencies of, the CLT elements were measured in a direct sound transmission facility; as well as, structure-borne sound transmission between CLT elements was measured on a junction mock-up. The experimental data was used as in-put data and for validation of the engineering model of EN 12354/ISO 15712 for the prediction of flanking sound insulation in buildings. The test procedures, analysis and results of this research project are presented here.
Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021
Research Status
Complete
Notes
Page 621
Summary
Mass timber products have shown tremendous potential as sustainable structural components in large building systems. However, challenges occur when open floor plan structures are desired due to conventional flat slab floor systems having difficulties achieving the longer floor span expectations (i.e., exceeding 9 m). This paper investigates the potential of an all-wood solution, namely, hollowcore mass timber (HMT) panels, in meeting the demands of longer spans while also minimizing the use of wood material when compared to a solid slab. A 400 mm deep, 9 m long HMT panel composed of 3-layer cross-laminated timber (CLT) panels as flanges, and glulam beams as webs, is compared to the maximum commonly available CLT and dowel-laminated timber (DLT) alternatives. Two analytical methods and a finite element model are used to determine the effective bending stiffness of the HMT panel, while CSA O86 design procedures are used for the CLT and DLT panels. The effective bending stiffness of the HMT panel between the finite element model and analytical methods ranged from 1.71–1.94 and 1.14–1.29 times greater, despite being 18% and 24% lighter, than the CLT and DLT panels, respectively. Although slightly deeper, the HMT section provided a more efficient use of materials when compared to the solid slab options. The vibration-controlled span limit of the HMT panel was on average 9.8 m, which was 1.8 m and 0.9 m longer than the CLT and DLT panels, respectively. Further areas of study were also identified and will be investigated as part of future work in the broader HMT panel research program.
In the construction of modern multi-storey mass timber structures, a composite floor system commonly specified by structural engineers is the timber–concrete composite (TCC) system, where a mass timber beam or mass timber panel (MTP) is connected to a concrete slab with mechanical connectors. The design of TCC floor systems has not been addressed in timber design standards due to a lack of suitable analytical models for predicting the serviceability and safety performance of these systems. Moreover, the interlayer connection properties have a large influence on the structural performance of a TCC system. These connection properties are often generated by testing. In this paper, an analytical approach for designing a TCC floor system is proposed that incorporates connection models to predict connection properties from basic connection component properties such as embedment and withdrawal strength/stiffness of the connector, thereby circumventing the need to perform connection tests. The analytical approach leads to the calculation of effective bending stiffness, forces in the connectors, and extreme stresses in concrete and timber of the TCC system, and can be used in design to evaluate allowable floor spans under specific design loads and criteria. An extensive parametric analysis was also conducted following the analytical procedure to investigate the TCC connection and system behaviour. It was observed that the screw spacing and timber thickness remain the most important parameters which significantly influence the TCC system behaviour.
A candidate CLT diaphragm analysis model approach is presented and evaluated as an engineering design tool motivated by the needs of seismic design in the United States. The modeling approach consists of explicitly modeling CLT panels as discrete orthotropic shell elements with connections between panels and connections from panels to structural framing modelled as two-point springs. The modeling approach has been compared to a developed CLT diaphragm design example based on U.S. standards showing the ability to obtain matching deflection results. The sensitivity of the deflection calculations to considering CLT panel-to-panel connection gap closure is investigated using a simple diaphragm example. The proposed modeling approach is also applied to the candidate floor diaphragm design for the Framework project, one of the two U.S. Tall Wood Building Prize Competition winners, currently under design. Observations from this effort are that the proposed method, while a more refined model than typically used during building design, shows promise to meet the needs of innovative CLT seismic designs where appropriate simpler diaphragm models are not available.