The benefits of using shear connectors to join wood beams to a concrete slab in a composite floor or deck system are many. Studies throughout the world have demonstrated significantly improved strength, stiffness, and ductility properties from such connection systems as well as citing practical building advantages such as durability, sound insulation, and fire resistance. In this study, one relatively new shear connector system that originated in Germany has been experimentally investigated for use with U.S. manufactured products. The connector system consists of a continuous steel mesh of which one half is glued into a southern pine Parallam® Parallel Strand Lumber beam and the other half embedded into a concrete slab to provide minimal interlayer slip. A variety of commercial epoxies were tested for shear strength and stiffness in standard shear or “push out” tests. The various epoxies resulted in a variety of shear constitutive behaviors; however, for two glue types,shear failure occurred in the steel connector resulting in relatively high initial stiffness and ductility as well as good repeatability. Slip moduli and ultimate strength values are presented and discussed. Full-scale bending tests, using the best performing adhesive as determined from the shear tests, were also conducted. Results indicate consistent, near-full composite action system behavior.
Innovative Engineered Timber Building Systems for Non-Residential Applications, Utilising Timber Concrete Composite Flooring Capable of Spanning Up to 8 to 10m
This project has developed technologies for prefabricated structural systems constructed from engineered wood products for floors and building frames, suitable for buildings up to eight stories in height. The project included the design of a virtual multi-storey timber building, a review of commercial flooring systems, and the development of interim design procedures for timber concrete composite (TCC) floors. Compared with either solid concrete or timber floors, TCC floors provide an excellent balance between increased stiffness, reduced weight, better acoustic separation and good thermal mass.
Outcomes from the project have confirmed TCC floors as a viable alternative to conventional flooring systems. The life cycle analysis of the virtual timber building has highlighted the potential advantages of timber-based building systems for commercial applications. The project also resulted in the formation of the Structural Timber Innovation Company, a research company that will continue to develop timber building systems in non-residential buildings in Australia and New Zealand.
Ease of construction and favorable overall costs relative to other construction types are making high-rise (i.e., 4- and 5-story) wood frame construction increasingly popular. With these buildings increasing in height, there is a greater impetus on designers to address frame and finishes movement in such construction. As we all know, buildings are dynamic creatures experiencing a variety of movements during construction and over their service life. In wood frame construction, it is important to consider not only absolute movement but also differential movement between dissimilar materials.
This article focuses on differential movement issues and how to recognize their potential and avoid problems by effective detailing.
The research is aimed at developing seismic methods for the design and evaluation of the seismic vulnerability of wooden structures, using a displacement-based approach. After a brief introduction on the seismic behaviour of timber structures, the general Direct Displacement-Based Design (Direct-DBD) procedure and the state-of-the-art are presented, with clear reference to the application of the Direct-DBD method to wooden buildings. The strength of the Direct-DBD method is its ability to design structures in a manner consistent with the level of damage expected, by directly relating the response and the expected performance of the structure. The research begins with a description of the procedural aspects of the Direct-DBD method and the parameters required for its application. The research presented focuses on the formulation of a displacement-based seismic design procedure, applicable to one-storey wooden structures made with a portal system. This typology is very common in Europe and particularly in Italy. A series of analytical expressions have been developed to calculate design parameters. The required analytical Direct-DBD parameters are implemented based on the mechanical behaviour of the connections, made with metal dowel-type fasteners. The calibration and subsequent validation of design parameters use a Monte Carlo numerical simulation and outcomes obtained by tests in full-scale. After the description of the Displacement-Based method for one-storey wooden structures, a series of guidelines to extend the Direct-DBD methodology to other types and categories of timber systems are proposed. The thesis presents the case of a multi-storey wood frame construction, which is a simple extension of the glulam portal frame system. Part of this work has been done within the RELUIS Project, (REte dei Laboratori Universitari di Ingegneria Sismica), Research Line IV, which in the years between 2005 and 2008 involved several Italian universities and Italian institutes of research in the development of new seismic design methods. The Project produced the first draft of model code for the seismic design of structures based on displacement (Direct-DBD). This thesis is the background to the section of the model code developed for timber structures.
The current outbreak of Mountain Pine Beetle (MPB) in the province of British Columbia (B.C.) is the most extensive disturbance event occurring in North American forests in recorded history. The concept of converting the beetle killed wood into engineered wood products by defect removal and reconstitution is employed to maximize value recovery from the material. Cross Laminated Timber (CLT), which is produced in modular form and can be utilized as part of a structural system for floor, wall or roof elements, is considered as an excellent application of the concept. CLT originates from Europe. Such products have been developed as a proprietary product by individual companies aimed at servicing specific markets. There is a need to investigate different ways of making CLT and to define its structural performance suitable for North America. The main focus of this study is to investigate the structural performance of box based CLT system used in floor applications. Comprehensive three dimensional finite element models, which can be used to analyze the mechanical and vibration behavior of the plate and box type structures, were developed. Four prototype box elements, each having five replicates, were designed and manufactured locally. Third point bending tests were conducted on the specimens in the Timber Engineering and Applied Mechanics (TEAM) Laboratory at the University of British Columbia. The numerical analysis agreed well with experimental data in terms of vertical deflection and bending stiffness. Vibration, which is critical to floor serviceability, was also studied. Three types of excitation were applied to measure the fundamental frequency of the twenty specimens. Finite element analysis provided good predictions of fundamental frequency values comparing to the experimental results. A local built demonstration building, L41home, was presented and analyzed as an example using the tools developed in this study for CLT applications. As a pioneer research of CLT materials in North America, this work has contributed to the understanding of the structural performance of floor systems using CLT panels for the commercial and residential applications.
This paper describes the design of a novel semi-prefabricated LVL-concrete composite floor that has been developed in New Zealand. In this solution, the floor units made from LVL joists and plywood are prefabricated in the factory and transported to the building site. The units are then lifted onto the supports and connected to the main frames of the building and to the adjacent units. Finally, a concrete topping is poured on top of the units in order to form a continuous slab connecting all the units. Rectangular notches cut from the LVL joists and reinforced with coach screws provide the composite action between the concrete slab and the LVL joists. This system proved to be an effective modular solution that ensures rapid construction. A design procedure based on the use of the effective flexural stiffness method, also known as the “gamma method” is proposed for the design of the composite floor at ultimate and serviceability limit states, in the short and long term. By comparison with the experimental results, it is shown that the proposed method leads to conservative design. A step-by-step design worked example of this novel semi-prefabricated composite floor concludes the paper.
Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping.
The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models have been derived for predicting material damping in timber members, beams or panels, or in more complex timber structures, such as floors. Material damping is defined as damping due to intrinsic material properties, and used to be referred to as internal friction. In addition, structural damping, defined as damping due to connections and friction in-between members, has been estimated for timber floors.
Ninth European Conference on Noise Control (Euronoise)
Research Status
Complete
Notes
June 10-13, 2012, Prague, Czech Republic
Summary
In residential multi-storey buildings of timber it is of great importance to reduce the flanking transmission of noise. Some building systems do this by installing a vibration-damping elastic interlayer, Sylomer or Sylodyn , in the junction between the support and the floor structure. This interlayer also improves the floor vibration performance by adding damping to the structure. In the present work the vibration performance of a floor with such interlayers has been investigated both in laboratory and field tests. A prefabricated timber floor element was tested in laboratory on rigid supports and on supports with four different types of interlayers. The results are compared with in situ tests on a copy of the same floor element. The effect on vibration performance i.e. frequencies, damping ratio and mode shapes is studied. A comparison of the in situ test and the test with elastic interlayer in laboratory shows that the damping in situ is approximately three times higher than on a single floor element in the lab. This indicates that the damping in situ is affected be the surrounding building structure. The achieved damping ratio is highly dependent on the mode shapes. Mode shapes that have high mode shape coefficients along the edges where the interlayer material is located, result in higher modal damping ratios. The impulse velocity response, that is used to evaluate the vibration performance and rate experienced annoyance in the design of wooden joist floors, seems to be reduced when adding elastic layers at the supports.
This paper describes numerical modelling to predict the fire resistance of engineered timber floor systems. The floor systems under investigation are timber composite floors (various timber joist and box floor cross sections), and timber-concrete composite floors. The paper describes 3D numerical modelling of the floor systems using finite element software, carried out as a sequential thermo-mechanical analysis. Experimental testing of these floor assemblies is also being undertaken to calibrate and validate the models, with a number of full scale tests to determine the failure mechanisms for each floor type and assess fire damage to the respective system components. The final outcome of this research will be simplified design methods for calculating the fire resistance of a wide range of engineered timber floor systems.
Timber-concrete composite structures were originally developed for upgrading existing timber oors, but during last decades, they have new applications in multistorey buildings. Most of the research performed on these structures has focused on systems in which wet concrete is cast on top of timber beams with mounted connectors. Recently investigations on composite systems were performed at Luleå University of Technology in Sweden, in which the concrete slab is prefabricated off-site with the connectors already embedded and then connected on-site to the timber joists. Similar studies have been carried out also on timber-concrete composite structures with prefabricated FRC slabs at Lund University in Sweden. Two kinds of shear connectors were incorporated in the prefabricated FRC concrete slabs. These last systems can be considered globally as partially prefabricated structures because only the slabs were cast off-site with already inserted shear connectors and then the connection with the timber beams is done on the building site. An innovative composite system for floor applications is presented in this thesis. The entire structure is prefabricated off-side, transported and direct mounted to the building on site, that can be seen as full prefabricated structures. Noticeable benefits of a full prefabricated structure are that the moving work from the building site to the workshop reduces construction costs, is more simple and fast of manufacture and erect, and of sure, has better quality, that means more durability. Self-tapping full-threaded screws to connect concrete slabs to timber beam were used. Dimensions of the composite beams and the spacing between the screws has been chosen by discussing different FE model in order to reach the optimal solution. The experimental campaign included:
(i) two short-time bending tests carried out on two dierent full-scale specimens,
(ii) dynamic tests conducted on one full-scale specimen,
(iii) long-time bending test carried out on one full-scale specimen,
(iv) compression tests on three cubes of concrete,
(v) nine withdrawal tests of the screws with different depth in the concrete.
The results of the experimental tests show that the composite beams have a very high level of resistance and stiffness and also allow to reach a high degree of efficiency. Last, comparisons between FE results, analytical calculations and experimental values have been performed and from them it can be concluded that FE model and theoretical calculations well interpret the behavior of the composite structure and provide reliable results.
This study investigates the in-plane stiffness of CLT floor diaphragms and addresses the lateral load distribution within buildings containing CLT floors. In practice, it is common to assume the floor diaphragm as either flexible or rigid, and distribute the lateral load according to simple hand calculations methods. Here, the applicability of theses assumption to CLT floor diaphragms is investigated. There is limited number of studies on the subject of in-plane behaviour of CLT diaphragms in the literature. Many of these studies involve testing of the panels or the connections utilized in CLT diaphragms. This study employs numerical modeling as a tool to address the in-plane behaviour of CLT diaphragms. The approach taken to develop the numerical models in this thesis has not been applied so far to CLT floor diaphragms. Detailed 2D finite element models of selective CLT floor diaphragm configurations are generated and analysed in ANSYS. The models contain a smeared panel-to-panel connection model, which is calibrated with test data of a special type of CLT connection with self-tapping wood screws. The floor models are then extended to building models by adding shearwalls, and the lateral load distribution is studied for each building model. A design flowchart is also developed to aid engineers in finding the lateral load distribution for any type of building in a systematic approach. By a parametric study, the most influential parameters affecting the in-plane behaviour of CLT floor diaphragm and the lateral load distribution are identified. The main parameters include the response of the CLT panel-to-panel connections, the in-plane shear modulus of CLT panels, the stiffness of shearwalls, and the floor diaphragm configuration. It was found that the applicability of flexible or rigid diaphragm assumptions is primarily dependent on the relative stiffness of the CLT floor diaphragm and the shearwalls.
FPInnovations launched the “Next Generation Building Systems” research program to support the expansion and diversification of wood into new markets. “Next Generation Wood Buildings” can be described as buildings that implement design and construction practices, and use innovative wood-based materials and systems beyond those defined and addressed in current building codes. As part of this program, the serviceability research focuses on addressing issues related to floor and building vibrations, sound transmission and creep.
CLT is a next generation wood building material, which is a promising alternative to concrete slabs. To facilitate wood expansion into the market traditionally dominated by steel and concrete, several CLT buildings have been designed or built. Taking this opportunity, we conducted this study on two CLT buildings in the province of Quebec (i.e.,Desbiens and Chibougamau) to collect data that will form a database for the development of design provisions and installation guides for controlling vibrations and noise in CLT floors and buildings. The study also provides some information to designers and architects to strengthen their confidence in using CLT in their building projects. It is our hope that the collaboration through this study demonstrates to both designers and users of CLT buildings that if we work together, we can build good quality CLT buildings.
During the construction, ambient vibration tests were conducted on the two CLT buildings to determine their natural frequencies (periods) and damping ratios. Vibration performance tests were conducted on selected CLT floors to determine their frequencies and static deflections. ASTM standard sound insulation tests were conducted on the selected CLT walls and floors in Chibougamau CLT building to develop the sound insulation solutions. After the two CLT buildings were completed, ASTM sound insulation tests were conducted in the selected units to determine the Field Sound Transmission Class (FSTC) of the finished floors and walls, and the Field Impact Insulation Class (FIIC) of the finished floors.
We found that in general, the vibration performance of these two CLT buildings and their floor vibration performance are functional. The efforts made by the design engineers, the architects, and the contractors to make it happen are commendable, considering the lack of design provisions and guidelines in building codes for controlling vibrations in such innovative wood floor and buildings. The sound insulation of the selected units in Chibougamau building was very satisfactory. This confirmed that with proper design, construction, and installation of the sound insulation solutions studied in this report, CLT floors, walls and buildings can achieve very good sound insulation.
Some specific recommendations for CLT building sound insulation:
If flanking paths can be minimized, then it is expected that better sound insulation than what we measured on the CLT floors during the building construction will be achieved ;
Increasing the stud spacing from 400mm to 600mm for the wood stud walls enhances the airborne sound insulation of the current wood stud-CLT wall assemblies tested in this study ;
Decoupling ceiling from the structure frame and from the CLT floors is a significant factor for cost-effective sound insulation solutions ;
Selection of solutions for FSTC and FIIC above fifty (50) for non-carpeted CLT floors will ensure the satisfaction of the majority of occupants ;
Conducting subjective evaluation is useful to ensure occupants satisfaction ;
For implementation of the sound insulation solutions for floating floors, it is necessary to consult wood flooring and ceramic tiles installation guides for floating the flooring.
An effort to use renewable materials leads to broader utilization of timber structures also for multi-storey buildings. However, wider application of timber floor structures in multi-storey buildings is limited by lower lateral rigidity, worse acoustic and fire safety parameters in comparison to concrete floor structures. The composite floor structures based on high performance silicates and wood represent the beneficial alternative to the modern timber floor structures. Proposed timber-concrete composite floor structure benefits from lower weight of slender HPC or UHPC deck (compared to common RC slab) while improving acoustic parameters and ifre safety of the structure (compared to timber floor structure). Experimental verification proved that effective mechanical connection can be ensured by gluing.
This paper describes the design of a system to monitor floor vibrations in an office building and an analysis of several months worth of collected data. Floors of modern office buildings are prone to occupant-induced vibrations. The contributing factors include long spans, slender and flexible designs, use of lightweight materials and low damping. As a result, resonant frequencies often fall in the range easily excited by normal footfall loading, creating potential serviceability problems due to undesirable levels of vibrations. This study investigates in-situ performance of a non-composite timber-concrete floor located in a recently constructed innovative multi-storey office building. The floor monitoring system consists of several displacement transducers to measure long-term deformations due to timber and concrete creep and three accelerometers to measure responses to walking forces, the latter being the focus of this paper. Floor response is typically complex and multimodal and the optimal accelerometer locations were decided with the help of the effective independence-driving point residue (EfI-DPR) technique. A novel approach to the EfI-DPR method proposed here uses a combinatorial search algorithm that increases the chances of obtaining the globally optimal solution. Several months worth of data collected by the monitoring system were analyzed using available industry guidelines, including ISO2631-1:1997(E), ISO10137:2007(E) and SCI Publication P354. This enabled the evaluation of the floor performance under real operating conditions.
Cross-laminated timber (CLT) is an innovative wood technology currently gaining popularity in Canada. However, there is little published information available regarding its performance in fire. The focus of this research is on a series of eight medium-scale, fire-resistance CLT floor tests. Parameters such as charring rate, temperature profile, deflection, gypsum protection and adhesive performance, as well as the overall fire resistance of the floors when subjected to both standard and non-standard fire exposures were evaluated. The results, which compare favourably to past standard fullscale CLT floor tests, were used to develop a numerical model capable of predicting the performance of various CLT floor configurations exposed to any possible fire or load. The experiments demonstrate that CLT panel constructions can be designed to possess a fire-resistance that complies with building code requirements. The additional fire performance data provided from the results of these tests will help facilitate the incorporation of CLT into design standards and building codes.
In recent years, there has been an increasing trend in Australia and New Zealand towards the use of long-span timber and timber-concrete composite (TCC) flooring systems for the construction of multi-storey timber buildings. The popularity of these flooring systems is because of their low cost, easy construction and the use of environmentally sustainable materials. Due to their light-weight, such long-span floors are however highly susceptible to vibrations induced by service loads. Although longspan timber and TCC flooring systems can easily be designed to resist the static loads using currently available design guidelines, it is crucial to also investigate the dynamic behaviour of these floors as the occupant discomfort due to excessive vibration may govern the design. Moreover, many structural failures are caused by dynamic interactions due to resonances, which highlight the importance of investigating the dynamic behaviour of flooring systems. To date, there are very limited design guidelines to address the vibration in long-span floors, especially composite floors, due to a lack of sufficient investigation.
In 2009, a research consortium named Structural Timber Innovation Company (STIC) was founded, with the aim to address various issues encountered with structural timber buildings including timber and TCC flooring systems. STIC is conducting Research and Development (R & D) work in a number of key areas to provide a new competitive edge for commercial and industrial structural timber buildings. The R & D work is undertaken with three parallel objectives at three universities, namely, the University of Technology Sydney (UTS), the University of Canterbury (UC) and the University of Auckland (UA). The focus of UTS is the assessment of various performance issues of long-span timber only and TCC flooring systems for multi-storey timber buildings. The work presented in this thesis deals with the investigation of the dynamic performance of timber only and TCC flooring systems, which is one of the sub-objectives of the research focus at UTS.
In particular, the presented research assesses the dynamic performance of long-span timber and TCC flooring systems using different experimental und numerical test structures. For the experimental investigations, experimental modal testing and analysis is executed to determine the modal parameters (natural frequencies, damping ratios and mode shapes) of various flooring systems. For the numerical investigations, finite element models are calibrated against experimental results, and are utilised for parametric studies for flooring systems of different sizes. Span tables are generated for both timber and TCC flooring systems that can be used in the design of long-span flooring systems to satisfy the serviceability fundamental frequency requirement of 8 Hz or above. For floors where vibration is deemed to be critical, the dynamic assessment using the 8 Hz frequency requirement alone may not be sufficient and additional dynamic criteria such as response factor, peak acceleration and unit load deflection need to be satisfied. To predict the fundamental frequency of various TCC beams and timber floor modules (beams), five different analytical models are utilised and investigated.
To predict the cross-sectional characteristics of TCC systems and to identify the effective flexural stiffness of partially composite beams, the “Gamma method” is utilised. Essential input parameters for the “Gamma method” are the shear connection properties (strength, serviceability stiffness and ultimate stiffness) that must be identified. Therefore, a number of experimental tests are carried out using small scale specimens to identify strength and serviceability characteristics of four different types of shear connection systems and three of them were adopted in the TCC beams. The connections included two types of mechanical fasteners (normal wood screw and SFS screw) and two types of notched connectors (bird-mouth and trapezoidal shape) with coach screw.
Traditionally, the composite action of a system is determined from static load testing using deflection measurements. However, static load testing is expensive, time consuming and difficult to perform on existing flooring systems. Therefore, two novel methods are developed in this thesis that determines the degree of composite action of timber composite flooring systems using only measurements from non-destructive dynamic testing. The core of both methods is the use of an existing mode-shape-based damage detection technique, namely, the Damage Index (DI) method to derive the loss of composite action indices (LCAIs) named as LCAI1 and LCAI2. The DI method utilises modal strain energies derived from mode shape measurements of a flooring system before and after failure of shear connectors. The proposed methods are tested and validated on a numerical and experimental timber composite beam structure consisting of two LVL components (flange and web). To create different degrees of composite action, the beam is tested with different numbers of shear connectors to simulate the failure of connection screws. The results acquired from the proposed dynamic-based method are calibrated to make them comparable to traditional static-based composite action results. It is shown that the two proposed methods can successfully be used for timber composite structures to determine the composite action using only mode shapes measurements from dynamic testing.
There is a strong trend to industrially produce multi-storey light weight timber based houses. This concept allows the buildings to be manufactured to a more or less prefabricated extent. Most common types are volume/room modules or flat wall and floor modules. When assembling the modules at the building site, elastomer isolators are used in several constructions to reduce flanking transmission. The sound insulation demands in the Nordic countries are relatively high and therefore the flanking transmission must be well controlled, where elastomer isolators are an alternative. Decoupled radiation isolated walls is another. There are though no working studies or mathematical models of the performance of these isolators. They are only treated as simple mass-springs systems that operate vertically, i.e. one degree of freedom. In this paper there is an analysis of experimentally data of the structure borne sound isolating performance of elastomer isolators that are separating an excited floor from receiving walls. The performance dependence of structure type is also presented. An empirically based regression model of the vibration level difference is derived. The model is based on measurements of six elastomer field installations, which are compared to five comparable installations without elastomers. A goal is that the model can be used for input in future SEN prediction models for modeling of sound insulation.
This research investigated the fire performance of unprotected timber floors, focussing on composite joist floors, composite box floors and timber-concrete composite floors. The study of these floors was conducted using the finite element software ABAQUS using a thermo-stress analysis in three dimensions, and with experimental fire tests of floor assemblies. The major goal of this research was to develop a simplified design approach for timber floors, validated against the numerical and experimental work.
Four furnace tests were conducted on unprotected timber floor systems in the full-scale furnace at the BRANZ facilities in New Zealand. A sequentially coupled thermal-stress analysis was conducted to determine the effects of a fire on floor assemblies under load. The thermal modelling predicted the charring damage of the floors tested in the experiments to within a few millimetres of precision, and the simplified assumptions made in relation to fire inputs, boundary conditions, mesh refinement and effective material parameters were accurate to the desired level of precision. A sensitivity study was conducted comparing different mesh sizes, time step sizes, material model approaches and software suites to determine any shortfalls which may be encountered in the analysis. It was found that a material model adopting a latent heat approach was the most adequate for modelling timber in fires using these effective values, and mesh sizes of up to 6 mm produced relatively precise results.
The structural modelling predicted the displacement response and failure times of the floors to within 20% of the experimental data, and the simplified assumptions made in relation to fire inputs, boundary conditions, mesh refinement and effective material properties were once again accurate to the desired level of precision. A modification to the reduction in tension strength at elevated temperatures was proposed to better predict the observed behaviour. A sensitivity study concluded that the material model definition plays a vital role in the output of the modelling. Non-standard fire exposures were also modelled for completeness.
A simplified design method to estimate the fire resistance of unprotected floor assemblies was also developed. The method uses a bi-linear charring rate the assumption of a zero strength layer in the timber. The method was compared to the experimental data from this research and others around the world. The results were also compared to other charring rate methodologies from around the world.
A series of 3 cross-laminated timber (CLT) fire-resistance tests were conducted in accordance with ULC S101 standard as required in the National Building Code of Canada.
The first two tests were 3-ply wall assemblies which were 105 mm thick, one unprotected and the other protected with an intumescent coating, FLAMEBLOC® GS 200, on the exposed surface. The walls were loaded to 295 kN/m (20 250 lb./ft.). The unprotected assembly failed structurally after 32 minutes, and the protected assembly failed after 25 minutes.
The third test consisted of a 175 mm thick 5-ply CLT floor assembly which used wood I-joists, resilient channels, insulation and 15.9 mm ( in.) Type X gypsum board protection. A uniform load of 5.07 kPa (106 lb./ft²) was applied. The floor assembly failed after 138 min due to integrity.
The paper reports on the activities of the RILEM technical committee “Reinforcement of Timber Elements in Existing Structures”. The main objective of the committee is to coordinate the efforts to improve the reinforcement practice of timber structural elements. Recent developments related to structural reinforcements can be grouped into three categories: (i) addition of new structural systems to support the existing structure; (ii) configuration of a composite system; and (iii) incorporation of elements to increase strength and stiffness. The paper specifically deals with research carried out at the Bern University of Applied Sciences Switzerland (BFH), the University of Minho Portugal (UniMinho), and the University of Trento Italy (UNITN). Research at BFH was devoted to improve the structural performance of rounded dovetail joints by means of different reinforcement methods: i) self-tapping screws, ii) adhesive layer, and iii) a combination of selftapping screws and adhesive layer. Research at UNITN targeted the use of “dry” connections for timber-to-timber composites, specifically reversible reinforcement techniques aimed at increasing the load-bearing capacity and the bending stiffness of existing timber floors. At UniMinho, double span continuous glulam slabs were strengthened with fibre-reinforced-polymers. All three examples demonstrate the improved structural performance of timber elements after reinforcing them.