Skip header and navigation

Refine Results By

312 records – page 1 of 16.

Analytical Procedure for Timber-Concrete Composite (TCC) System with Mechanical Connectors

https://research.thinkwood.com/en/permalink/catalogue3119
Year of Publication
2022
Topic
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Author
Mirdad, Md Abdul Hamid
Khan, Rafid
Chui, Ying Hei
Organization
University of Illinois at Urbana-Champaign
University of Alberta
Editor
Tullini, Nerio
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Keywords
Mechanical Connectors
Progressive Yielding
Effective Bending Stiffness
Deflection
Vibration
Research Status
Complete
Series
Buildings
Summary
In the construction of modern multi-storey mass timber structures, a composite floor system commonly specified by structural engineers is the timber–concrete composite (TCC) system, where a mass timber beam or mass timber panel (MTP) is connected to a concrete slab with mechanical connectors. The design of TCC floor systems has not been addressed in timber design standards due to a lack of suitable analytical models for predicting the serviceability and safety performance of these systems. Moreover, the interlayer connection properties have a large influence on the structural performance of a TCC system. These connection properties are often generated by testing. In this paper, an analytical approach for designing a TCC floor system is proposed that incorporates connection models to predict connection properties from basic connection component properties such as embedment and withdrawal strength/stiffness of the connector, thereby circumventing the need to perform connection tests. The analytical approach leads to the calculation of effective bending stiffness, forces in the connectors, and extreme stresses in concrete and timber of the TCC system, and can be used in design to evaluate allowable floor spans under specific design loads and criteria. An extensive parametric analysis was also conducted following the analytical procedure to investigate the TCC connection and system behaviour. It was observed that the screw spacing and timber thickness remain the most important parameters which significantly influence the TCC system behaviour.
Online Access
Free
Resource Link
Less detail

Behavior of timber-concrete composite with defects in adhesive connection

https://research.thinkwood.com/en/permalink/catalogue3108
Year of Publication
2022
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Organization
Riga Technical University
Publisher
Elsevier
Year of Publication
2022
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Adhesive Connection
Rigid Connection
Conference
ICSI 2021 The 4th International Conference on Structural Integrity
Research Status
Complete
Series
Procedia Structural Integrity
Summary
Rigid timber to concrete connection is the most effective solution for timber-concrete composite members subjected to the flexure which provides full composite action and better structural behaviour. One of the most used technologies to produce glued connection of the timber-concrete composite is “dry” method, which includes gluing together of timber and precast concrete slab. This technique has high risk of forming a poor-quality rigid connection in timber-concrete composite, and there are difficulties in controlling the quality of the glued connection. The effect of the non-glued areas in connection between composite layers on the shear stresses and energy absorption were investigated by finite element method and laboratorian experiment. Three timber-concrete composite panels in combination with carbon fibre reinforced plastic composite tapes in the tension zone with the span 1.8 m were statically loaded till the failure by the scheme of three-point bending. Mid-span displacements were measured in the bending test. One specimen was produced by dry method, by gluing together cross-laminated timber panel and prefabricated concrete panel. Timber-concrete qualitative connection of the other two specimens was provided by the granite chips, which were glued on the surface of the cross-laminated timber by epoxy, and then wet concrete was placed. Dimensions of the crushed granite pieces changes within the limits from 16 to 25 mm. The investigated panel with different amount and sizes of non-glued areas in the timber to concrete connection was numerically modelled. Obtained results shown, that the increase of shear stresses is influenced not so much by a total amount of non-glued areas, but by the size of the individual defective areas. Moreover, large non-glued areas significantly reduce the energy absorption of elements subjected to the flexure, which was observed experimentally for defective panel produced by the classical dry method with almost 4 times larger mid-span displacements than for panel with full composite action provided by the proposed production technology of the timber to concrete rigid connection. So, the proposed technology based on the use of granite chips, provides a high-quality connection between timber and concrete layers, with insignificant ration between possible defect and total connection surface area, which is equal to the area of one granite chips edge.
Online Access
Free
Resource Link
Less detail

CLT Diaphragm Design for Wind and Seismic Resistance

https://research.thinkwood.com/en/permalink/catalogue2967
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Breneman, Scott
McDonnell, Eric
Tremayne, Donovan
Houston, Jonas
Gu, Mengzhe
Zimmerman, Reid
Montgomery, Graham
Organization
WoodWorks
Holmes
KPFF Consulting Engineers
Timberlab
Publisher
WoodWorks
Year of Publication
2022
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Seismic
Keywords
Diaphragm
Shear Capacity
Diaphragm Flexibility
Panel-to-Panel Connections
Research Status
Complete
Summary
Cross-laminated timber (CLT) has become increasingly prominent in building construction and can be seen in buildings throughout the world. Specifically, the use of CLT floor and roof panels as a primary gravity force-resisting component has become relatively commonplace. Now, with availability of the 2021 Special Design Provisions for Wind and Seismic (SDPWS 2021) from the American Wood Council (AWC), U.S. designers have a standardized path to utilize CLT floor and roof panels as a structural diaphragm. Prior to publication of this document, projects typically had to receive approval to use CLT as a structural diaphragm on a case-by-case basis from the local Authority Having Jurisdiction (AHJ). This paper highlights important provisions of SDPWS 2021 for CLT diaphragm design and recommendations developed by the authors in the upcoming CLT Diaphragm Design Guide, based on SDPWS 2021.
Online Access
Free
Resource Link
Less detail

Cost Factor Analysis for Timber–Concrete Composite with a Lightweight Plywood Rib Floor Panel

https://research.thinkwood.com/en/permalink/catalogue3100
Year of Publication
2022
Topic
Cost
Material
Timber-Concrete Composite
Application
Floors
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Pakrastins, Leonids
Organization
Riga Technical University
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Cost
Keywords
Adhesive Connection
Plywood Rib Panel
Floor Vibrations
Rigid Connection
Fibre Reinforced Concrete
Research Status
Complete
Series
Buildings
Summary
With the growing importance of the principle of sustainability, there is an increasing interest in the use of timber–concrete composite for floors, especially for medium and large span buildings. Timber–concrete composite combines the better properties of both materials and reduces their disadvantages. The most common choice is to use a cross-laminated timber panel as a base for a timber–concrete composite. But a timber–concrete composite solution with plywood rib panels with an adhesive connection between the timber base and fibre reinforced concrete layer is offered as the more cost-effective constructive solution. An algorithm for determining the rational parameters of the panel cross-section has been developed. The software was written based on the proposed algorithm to compare timber–concrete composite panels with cross-laminated timber and plywood rib panel bases. The developed algorithm includes recommendations of forthcoming Eurocode 5 for timber–concrete composite design and an innovative approach to vibration calculations. The obtained data conclude that the proposed structural solution has up to 73% lower cost and up to 71% smaller self-weight. Thus, the proposed timber–concrete composite construction can meet the needs of society for cost-effective and sustainable innovative floor solutions.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Floor: Analysis of the Acoustic Properties and Radiation Efficiency

https://research.thinkwood.com/en/permalink/catalogue3018
Year of Publication
2022
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Granzotto, Nicola
Marzi, Arianna
Gasparella, Andrea
Organization
Free University of Bozen
Editor
Vasques, César M. A.
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Acoustic Characterization
Sound Radiation Efficiency
Research Status
Complete
Series
Applied Sciences
Summary
Cross-Laminated Timber (CLT) is a building technology that is becoming increasingly popular due to its sustainable and eco-friendly nature, as well as its availability. Nevertheless, CLT presents some challenges, especially in terms of impact noise and airborne sound insulation. For this reason, many studies focus on the vibro-acoustic behavior of CLT building elements, to understand their performance, advantages and limitations. In this paper, a 200 mm CLT floor has been characterized in the laboratory, according to ISO standards, by three noise sources: dodecahedron, standard tapping machine and rubber ball. In order to understand the vibro-acoustic behavior of the CLT floor, measurements through the analysis of sound pressure levels and velocity levels, measured by dedicated sensors, were performed. Analysis was carried out in order to understand what is prescribed by the prediction methods available in the literature and by the simulation software. Then, a specific prediction law for the CLT floor under investigation was derived. Finally, an analysis on sound radiation index is provided to complete the vibro-acoustic study.
Online Access
Free
Resource Link
Less detail

Development of Creep Deformations during Service Life: A Comparison of CLT and TCC Floor Constructions

https://research.thinkwood.com/en/permalink/catalogue2955
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Binder, Eva
Derkowski, Wit
Bader, Thomas
Organization
Linnæus University
Editor
Brandner, Reinhard
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Serviceability Limit State
Gamma Method
Linear Viscoelasticity
Research Status
Complete
Series
Buildings
Summary
Cross-laminated timber (CLT) slabs in residential buildings need additional weight, e.g., in the form of screeds or gravel layers, to fulfill the criterion for the highest impact-sound class. The additional mass is, however, not exploited for the load bearing behavior, but adds additional weight and leads to an increased height of the floor construction. In this study, such a CLT floor construction with a construction height of 380 mm is compared with a composite slab consisting of a CLT plate with a concrete layer on top with a floor construction height of 330 mm. The timber concrete composite (TCC) slab has a different creep behavior than the CLT slab. Thus, the development of the time-dependent deflections over the service life are of interest. A straightforward hybrid approach is developed, which exploits advanced multiscale-based material models for the individual composite layers and a standardized structural analysis method for the structural slab to model its linear creep behavior. The introduced approach allows to investigate load redistribution between the layers of the composite structure and the evolution of the deflection of the slab during the service life. The investigated slab types show a similar deflection after 50 years, while the development of the deflections over time are different. The CLT slab has a smaller overall stiffness at the beginning but a smaller decrease in stiffness over time than the investigated TCC slab.
Online Access
Free
Resource Link
Less detail

Experimental and numerical study on the bending response of a prefabricated composite CLT-steel floor module

https://research.thinkwood.com/en/permalink/catalogue3047
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Owolabi, David
Loss, Cristiano
Organization
University of British Columbia
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Composite Floors
Hybrid Construction
Mass Timber
Cross-laminated Timber
Prefabricated Construction
Low-Carbon Structures
Bending Stiffness
Research Status
Complete
Series
Engineering Structures
Summary
Cross-laminated timber (CLT) is one of the most widely utilized mass timber products for floor construction given its sustainability, widespread availability, ease of fabrication and installation. Composite CLT-based assemblies are emerging alternatives to provide flooring systems with efficient design and optimal structural performance. In this paper, a novel prefabricated CLT-steel composite floor module is investigated. Its structural response to out-of-plane static loads is assessed via 6-point bending tests and 3D finite-element computational analysis. For simply supported conditions, the results of the investigation demonstrate that the floor attains a high level of composite efficiency (98%), and its bending stiffness is about 2.5 times those of its components combined. Within the design load range, the strain diagrams are linear and not affected by the discontinuous arrangement and variable spacing of the shear connectors. The composite floor module can reach large deflection without premature failure in the elements or shear connectors, with plasticity developed in the cold-formed steel beams and a maximum attained load 3.8 times its ultimate limit state design load. The gravity design of the composite module is shown to be governed by its serviceability deflection requirements. However, knowledge gaps still exist on the vibration, fire, and long-term behaviour of this composite CLT-steel floor system.
Online Access
Free
Resource Link
Less detail

Influence of the connector shape parameters in the structural behaviour of the adhesive-free timber floor panels

https://research.thinkwood.com/en/permalink/catalogue3125
Year of Publication
2022
Topic
Mechanical Properties
Application
Floors
Author
Moltini, Gonzalo
Baño, Vanesa
Organization
Universidad de la República
Publisher
Elsevier
Year of Publication
2022
Format
Conference Paper
Application
Floors
Topic
Mechanical Properties
Keywords
Adhesive-free Connection
Structural Yield
Timber-to-timber Panels
Conference
ICSI 2021 The 4th International Conference on Structural Integrity
Research Status
Complete
Series
Procedia Structural Integrity
Summary
Timber-to-timber panels (TTPs) are adhesive- and steel-free structural components formed by carpentry joints of Scots pine to be used as floors. A numerical model simulating bending tests on TTPs and considering timber as an orthotropic and bi-modulus material was validated from experimental results of deflection, and rolling shear strength. Since the serviceability and ultimate limit states of the TTPs was mainly defined by the rolling shear properties of the connectors, this paper aims to study the influence of different connector shape parameters in the structural behavior of the panels. For that, values of the connector height (hc varying between 40 and 100 mm), width (b1 varying between 40 and 100 mm) and the dove-tail angle (a varying between 45º and 75º) were introduced in the numerical models to obtain both failure load and stiffness for different span TTPs. Results showed that TTP deflection and shear stresses on the connectors decreases with the increase of the height and the width of the connectors. As the width of the connector (b1) increases, the maximum shear stress decreases up to 42%. For a same connector height, the angle of the dove-tail shows low influence in the maximum shear stress; however, it plays a greater role in the deflection of the panels. For the connectors of 40 mm of height TTP deflection was barely influenced by connector width; however, for higher connectors (hc = 60 mm), TTP deflection decreased up to 41% as width increases. So, new TTPs configurations varying the connector parameters showed an improvement on the deflection and on the shear stresses of the connectors.
Online Access
Free
Resource Link
Less detail

Mechanical Behavior of GFRP Dowel Connections to Cross Laminated Timber-CLT Panels

https://research.thinkwood.com/en/permalink/catalogue2957
Year of Publication
2022
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Almeida, Amanda
Moura, Jorge
Organization
Maringá State University
Londrina State University
Editor
Knapic, Sofia
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Connections
Keywords
GFRP
Dowel-Type Connections
Panel-to-Panel
Design Methodology
Push-Out Tests
Research Status
Complete
Series
Forests
Summary
Sustainability issues are driving the civil construction industry to adopt and study more environmentally friendly technologies as an alternative to traditional masonry/concrete construction. In this context, plantation wood especially stands out as a constituent of the cross-laminated timber (CLT) system, laminated wood glued in perpendicular layers forming a solid-wood structural panel. CLT panels are commonly connected by screws or nails, and several authors have investigated the behavior of these connections. Glass-fiber-reinforced polymer (GFRP) dowels have been used to connect wooden structures, and have presented excellent performance results; however, they have not yet been tested in CLT. Therefore, the objective of this study is to analyze the glass-fiber-reinforced polymer (GFRP)-doweled connections between CLT panels. The specimens were submitted to monotonic shear loading, following the test protocol described in EN 26891-1991. Two configurations of adjacent five-layer panels were tested: flat-butt connections with 45° dowels (x, y, and z axes), and half-lap connections with 90° dowels. The results were evaluated according to the mechanical connection properties of strength, stiffness, and ductility ratio. The results showed higher stiffness for butt-end connections. In terms of strength, the half-lap connections were stronger than the butt-end connections.
Online Access
Free
Resource Link
Less detail

Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization

https://research.thinkwood.com/en/permalink/catalogue3041
Year of Publication
2022
Topic
Cost
Application
Floors
Author
Jelušic, Primož
Kravanja, Stojan
Organization
University of Maribor
Editor
Giannopoulos, Georgios
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Application
Floors
Topic
Cost
Keywords
Structural Optimization
Cost Optimization
Discrete Optimization
Mixed-Integer Nonlinear Programming
MINLP
Timber Floor Joists
Research Status
Complete
Series
Materials
Summary
This study investigates the optimization of the design of timber floor joists, taking into account the self-manufacturing costs and the discrete sizes of the structure. This non-linear and discrete class of optimization problem was solved with the multi-parametric mixed-integer non-linear programming (MINLP). An MINLP optimization model was developed. In the model, an accurate objective function of the material and labor costs of the structure was subjected to design, strength, vibration and deflection (in)equality constraints, defined according to Eurocode regulations. The optimal design of timber floor joists was investigated for different floor systems, different materials (sawn wood and glulam), different load sharing systems, different vertical imposed loads, different spans, and different alternatives of discrete cross-sections. For the above parameters, 380 individual MINLP optimizations were performed. Based on the results obtained, a recommended optimal design for timber floor joists was developed. Engineers can select from the recommendations the optimal design system for a given imposed load and span of the structure. Economically suitable spans for timber floor joists structures were found. The current knowledge of competitive spans for timber floor joists is extended based on cost optimization and Eurocode standards.
Online Access
Free
Resource Link
Less detail

Optimization framework for cost and carbon emission of timber floor elements

https://research.thinkwood.com/en/permalink/catalogue3001
Year of Publication
2022
Topic
Cost
Environmental Impact
Application
Floors
Author
Nesheim, Sveinung
Mela, Kristo
Malo, Kjell
Labonnote, Nathalie
Organization
Norwegian University of Science and Technology
Tampere University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Application
Floors
Topic
Cost
Environmental Impact
Keywords
Cost Optimization
Carbon Emission Reduction
Timber Floor
Eurocode 5
Research Status
Complete
Series
Engineering Structures
Summary
Long-span timber floor elements increase the adaptability of a building and they exhibit a significant market potential. High cost of the floor elements is a challenge, and the timber sector is under substantial pressure to find more economical solutions without weakening otherwise favourable environmental performance. The range of technical timber-based materials and components, structural typologies, overlays and ceiling systems represent an immense solution space when searching for a competitive design for a specific building application. Finding the optimum solution requires a computational procedure. In this study a recent development for the accounting of manufacturing resources for timber elements is utilized to build an optimization framework for cost and ECO2 minimisation of timber floor elements finalized at the factory gate. The design of the element is formulated as a discrete optimization problem which is solved by a mixed-integer sequential linearization procedure. Various material combinations and constraint combinations are treated. The optimization framework provides a tool for rapid design exploration that can be used in timber floor design situations. The results of the calculations carried out in this study provide insight on the general trends of optimum floor elements. The optimization model is used to analyse the characteristics of the optimum designs, and a comparison between the current and the proposed method for the second generation of Eurocode 5 is chosen as a vehicle for demonstrating achievable implications.
Online Access
Free
Resource Link
Less detail

Prediction of bending performance for a separable CLT-concrete composite slab connected by notch connectors

https://research.thinkwood.com/en/permalink/catalogue2931
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Pang, Sung-Jun
Ahn, Kyung-Sun
Jeong, Seok-man
Lee, Gun-Cheol
Kim, Hyeon Soo
Oh, Jung-Kwon
Organization
Seoul National University
Korea National University of Transportation
Korea Institute of Civil Engineering and Building Technology
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Composite Slab
Bending Strength
Notched Connection
Round Notch
Research Status
Complete
Series
Journal of Building Engineering
Summary
In this study, the bending performance of a separable cross-laminated timber (CLT)–concrete composite slab for reducing environmental impact was investigated. The slab has consisted of CLT and eco–concrete, and round-notch shape shear connectors resist the shear force between the CLT and eco-concrete. The eco–concrete was composed of a high-sulfated calcium silicate (HSCS) cement, which ensures low energy consumption in the production process. The bending stiffness and load-carrying capacities of the slab were theoretically predicted based on the shear properties of the notch connectors and validated with an experimental test. The shear properties of two types of notch shear connectors (Ø100 mm and Ø200 mm) were measured by planar shear tests. As a result, the stochastically predicted bending stiffness of the slab (with Ø100 mm shear connector) was 0.364 × 1012 N mm2, which was almost similar to test data. The load-carrying capacities of the slab were governed by the shear failure of the notch connectors, and the lower fifth percentile point estimate (5% PE) was 21.9 kN, which was 7.9% higher than the prediction (20.2 kN). In a parameter study, the effect of notch diameter for the CLT-concrete slab span was analyzed depending on the applied loads, and the maximum spans of the slab with Ø100 mm notch or Ø200 mm notch were not significantly different.
Online Access
Free
Resource Link
Less detail

Structural Performance of Mass Timber Panel-Concrete Composite Floors with Notched Connections

https://research.thinkwood.com/en/permalink/catalogue3122
Year of Publication
2022
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Zhang, Lei
Organization
University of Alberta
Year of Publication
2022
Format
Thesis
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Notched Connection
Discrete Bond Composite Beam Model
Mass Timber Panel
Connection Stiffness
Effective Bending Stiffness
Load-Carrying Capacity
Research Status
Complete
Summary
This thesis focuses on the structural performance of mass timber panel-concrete composite floors with notches. Mass timber panels (MTPs) such as cross-laminated timber, glue-laminated timber, and nail-laminated timber, are emerging construction materials in the building industry due to their high strength, great dimensional stability, and prefabrication. The combination of MTPs and concrete in the floor system offers many structural, economic, and ecological benefits. The structural performance of MTP-concrete composite floors is governed by the shear connection system between timber and concrete. The notched connections made by cutting grooves on timber and filling them with concrete are considered as a structurally efficient and cost-saving connecting solution for resisting shear forces and restricting relative slips between timber and concrete. However, the notched connection design in the composite floors is not standardized and the existing design guidelines are inadequate for MTP-concrete composite floors. To study the structural performance of notched connections and notch-connected composite floors, this thesis presented experimental, numerical, and analytical investigations. Push-out tests were conducted on the notched connections first, and then bending tests and vibration tests were conducted on full-scale composite floors. Finite element models were built for the notched connections to derive the connection shear stiffness. Finally, analytical solutions were developed to predict the internal actions of the composite floors under external loads. This study shows that the structural performance of notched connections is affected by the geometry of the connections and material properties of timber and concrete. The notch-connected MTP-concrete composite floors showed high bending stiffness but were not fully composite. The floors with shallow notches tended to fail in a ductile manner but had lower bending stiffness than floors with deep notches. The composite floors with deep notches, however, often fail abruptly in the concrete notches. By reinforcing the notched connections with steel fasteners, the composite floor can achieve high bending stiffness, high load-carrying capacity, and controlled failure pattern. The proper number and locations of notched connections in the composite floors can be determined from the proposed composite beam model. This thesis presented promising results in terms of the static and dynamic structural performance of notch-connected MTP-concrete composite floors. The test investigations added additional data to the current research body and prompted further evolvement of timber-concrete composite floors. The proposed empirical equations for estimating the connection stiffness and strength and composite beam model for predicting the serviceability and ultimate structural performance of composite floors provide useful tools to analyze the notch-connected MTP-concrete composite floors. The design recommendations for MTP-concrete composite floors with notches are provided in the thesis.
Online Access
Free
Resource Link
Less detail

Timber-concrete composite structural flooring system

https://research.thinkwood.com/en/permalink/catalogue3065
Year of Publication
2022
Topic
Mechanical Properties
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Author
Estévez-Cimadevila, J.
Martín-Gutiérrez, E.
Suárez-Riestra, F.
Otero-Chans, D.
Vázquez-Rodríguez, J. A.
Organization
Universidade da Coruña
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Design and Systems
Keywords
Timber Flooring System
Mixed Beams
Shear Connector
Research Status
Complete
Series
Journal of Building Engineering
Summary
An integrated solution is presented for the execution of building structures using timber-concrete composite (TCC) sections that make efficient use of the mechanical properties of both materials. The system integrates flooring and shaped prefabricated beams composed of a lower flange of glued laminated timber (GLT) glued to one or more plywood or laminated veneer lumber (LVL) ribs and linked to an upper concrete slab poured in situ. The parts may be prefabricated in T shape (only one rib), in p shape (two ribs), or with multiple ribs to create wider pieces, thereby reducing installation operations. The basis of the system is the timber-concrete shear connection in the form of holes through the ribs, which are filled by the in situ-poured concrete. The connection is complemented with the arrangement of reinforcement bars through the holes. Three test campaigns were undertaken. Shear tests of the timber-concrete connection in 12 test pieces. Shear test along the wood-wood glue line (72 planes tested) and wood -plywood (24 planes tested). Delamination test of the glued planes (24 wood-wood planes and 8 wood-plywood planes). The results indicate a high strength joint, with ductile failure and high composite effect. Likewise, the shear test results along the glue line and the delamination tests show section integrity under demanding hygrothermal conditions. Preliminary sizing curves were developed considering the Gamma Method to evaluate the performance of the system. The results show the possibilities of the system, as pouring the upper slab concrete in situ makes it possible to create continuous semi-rigid joints between the elements. This gives rise to slender flooring structures, light and with high stiffness plane against horizontal forces.
Online Access
Free
Resource Link
Less detail

Concealed Spaces in Mass Timber and Heavy Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2920
Year of Publication
2021
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Decking
Walls
Roofs
Author
McLain, Richard
Organization
WoodWorks
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Decking
Walls
Roofs
Topic
Fire
Keywords
IBC
Concealed Spaces
Dropped Ceiling
Sprinklers
Noncombustible Insulation
Research Status
Complete
Summary
Concealed spaces, such as those created by a dropped ceiling in a floor/ceiling assembly or by a stud wall assembly, have unique requirements in the International Building Code (IBC) to address the potential of fire spread in nonvisible areas of a building. Section 718 of the 2018 IBC includes prescriptive requirements for protection and/or compartmentalization of concealed spaces through the use of draft stopping, fire blocking, sprinklers and other means.
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber under Concentrated Compression Loads - Methods of Reinforcement

https://research.thinkwood.com/en/permalink/catalogue2932
Year of Publication
2021
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Maurer, Bernhard
Maderebner, Roland
Organization
University of Innsbruck
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Keywords
Multi-storey Buildings
Point-supported Flat Slabs
Reinforcement
System Connector
SPIDER Connector
Punching Test
Research Status
Complete
Series
Engineering Structures
Summary
Point-supported flat slabs made of cross laminated timber (CLT) for multi-storey buildings pose various challenges to structural timber design. One aspect are concentrated compressive loads, which cause stress concentrations in the form of shear and compression perpendicular to the grain at the point supports. The present work deals with this problem and shows a method, how the support area can be reinforced with a system connector. After a specification of the connector, the functionality of this construction element is described on the basis of experimental, numerical and analytical studies for a symmetrical loading. The interaction of the connector with the (CLT) is presented with an anlaytical model and numerical simulations, and evaluated with mechanical tests.
Online Access
Free
Resource Link
Less detail

Cyclic Response of Insulated Steel Angle Brackets Used for Cross-Laminated Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2765
Year of Publication
2021
Topic
Seismic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Kržan, Meta
Azinovic, Boris
Publisher
Springer
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Seismic
Acoustics and Vibration
Connections
Keywords
Angle Bracket
Sound Insulation
Insulation
Monotonic Test
Cyclic Tests
Wall-to-Floor
Stiffness
Load Bearing Capacity
Shear
Tensile
Research Status
Complete
Series
European Journal of Wood and Wood Products
Summary
In cross-laminated timber (CLT) buildings, in order to reduce the disturbing transmission of sound over the flanking parts, special insulation layers are used between the CLT walls and slabs, together with insulated angle-bracket connections. However, the influence of such CLT connections and insulation layers on the seismic resistance of CLT structures has not yet been studied. In this paper, experimental investigation on CLT panels installed on insulation bedding and fastened to the CLT floor using an innovative, insulated, steel angle bracket, are presented. The novelty of the investigated angle-bracket connection is, in addition to the sound insulation, its resistance to both shear as well as uplift forces as it is intended to be used instead of traditional angle brackets and hold-down connections to simplify the construction. Therefore, monotonic and cyclic tests on the CLT wall-to-floor connections were performed in shear and tensile/compressive load direction. Specimens with and without insulation under the angle bracket and between the CLT panels were studied and compared. Tests of insulated specimens have proved that the insulation has a marginal influence on the load-bearing capacity; however, it significantly influences the stiffness characteristics. In general, the experiments have shown that the connection could also be used for seismic resistant CLT structures, although some minor improvements should be made.
Online Access
Free
Resource Link
Less detail

Deconstructable Hybrid Connections for the Next Generation of Prefabricated Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2809
Year of Publication
2021
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Shear Walls
Author
Shulman, Samuel
Loss, Cristiano
Organization
University of British Columbia
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Hybrid Building Systems
Shear Walls
Topic
Connections
Keywords
Steel Rods
Epoxy
Push-Out-Shear Tests
Prefabrication
Disassembly
Reuse
Research Status
Complete
Summary
Timber has been used for building construction for centuries, until the industrial revolution, when it was often replaced by steel and concrete or confined to low-rise housings. In the last thirty years however, thanks to the development of mass timber products and new global interest in sustainability, timber has begun to make a resurgence in the building industry. As building codes and public perception continues to change, the demand for taller and higher-performance timber buildings will only grow. Thus, a need exists for new construction technology appropriate for taller mass timber construction, as well as for fabrication and deconstruction practices that respect wood’s inherent sustainable nature. With this in mind, this research program aims to develop a new hybrid shear connection for mass timber buildings that allows for easy construction, deconstruction, and reuse of the structural elements. This report includes results of Phase 1, which focused on connections consisting of partially threaded 20M and 24M steel rods bonded into pockets formed in CLT and surrounded by thick crowns of high-strength three-component epoxy-based grout. A total of 168 specimens were designed and fabricated, and push-out shear tests carried out with a displacement-controlled monotonic loading protocol. Strength and stiffness values were assessed and effective failure modes in specimens identified. These latter, along with the recorded load-deformation curves, indicate that it is possible to develop mechanics-based design models and design formulas akin to those already used for typical dowel-type fastener timber connections. Additionally, the specimens were easily fabricated in the lab and quickly fastened to the test jig by means of nuts and washers, suggested such connections have a strong potential for prefabrication, disassembly, and reuse.
Online Access
Free
Resource Link
Less detail

Demonstrating Fire-Resistance Ratings for Mass Timber Elements in Tall Wood Structures

https://research.thinkwood.com/en/permalink/catalogue2919
Year of Publication
2021
Topic
Fire
Material
Solid-sawn Heavy Timber
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Beams
Floors
Author
McLain, Richard
Organization
WoodWorks
Year of Publication
2021
Format
Report
Material
Solid-sawn Heavy Timber
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
Application
Beams
Floors
Topic
Fire
Keywords
IBC
Minimum Dimensions
Fire Resistance Rating
Noncombustible Protection
Research Status
Complete
Summary
Changes to the 2021 International Building Code (IBC) have created opportunities for wood buildings that are much larger and taller than prescriptively allowed in past versions of the code. Occupant safety, and the need to ensure fire performance in particular, was a fundamental consideration as the changes were developed and approved. The result is three new construction types—Type IV-A, IV-B and IV-C—which are based on the previous Heavy Timber construction type (renamed Type IV-HT), but with additional fire protection requirements. One of the main ways to demonstrate that a building will meet the required level of passive fire protection, regardless of structural materials, is through hourly fire-resistance ratings (FRRs) of its elements and assemblies. The IBC defines an FRR as the period of time a building element, component or assembly maintains the ability to confine a fire, continues to perform a given structural function, or both, as determined by the tests, or the methods based on tests, prescribed in Section 703. FRRs for the new construction types are similar to those required for Type I construction, which is primarily steel and concrete. They are found in IBC Table 601, which includes FRR requirements for all construction types and building elements; however, other code sections should be checked for overriding provisions (e.g., occupancy separation, shaft enclosures, etc.) that may alter the requirement.
Online Access
Free
Resource Link
Less detail

Developing a Large Span Timber-based Composite Floor System for Highrise Office Buildings Phase I

https://research.thinkwood.com/en/permalink/catalogue2803
Year of Publication
2021
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2021
Format
Report
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Design and Systems
Keywords
Box Girder
Timber Composite Floor
Span
High-Rise
Tall Wood Buildings
Stiffness
Composite Action
Research Status
Complete
Summary
This project proposes a timber-based composite floor that can span 12 m and be used in the construction of 40+ story office buildings. This floor system integrates timber panels and timber beams to form a continuous box girder structure. The timber panels function as the flanges and the timber beams as the web. The beams are spaced and connected to the flange panels so that sufficient bending stiffness of a 12 m span can be achieved via the development of composite action. The current phase of this project studied the performance of the connections between timber elements in the proposed composite member. Six types of connections using different flange material and connection techniques were tested: Cross Laminated Timber (CLT), Laminated Strand Lumber (LSL), Laminated Veneer Lumber (LVL), and Post Laminated Veneer Lumber (PLVL). Glulam was used as the web. The majority of the connections used self-tapping wood screws except one had notches. The load-carrying capacity, stiffness, and ductility of the connections were measured. The stiffness of CLT, LSL, and PLVL connections was in the same range, 19-20 kN/mm per screw. Amongst the three, LSL had the highest peak load and PLVL had the highest proportional limit. The stiffness of the two LVL screw connections was around 13 kN/mm. The notched LVL connection had significantly higher stiffness than the rest, and its peak load was in the same range as LSL, but the failure was brittle. LVL was used to manufacture the full scale timber composite floor element. With a spacing of 400 mm, the overall stiffness reached 33689 N
mm2×109, which was 2.5 times the combined stiffness of two Glulam beams. The predicted overall stiffness based on Gamma method was within 5% of the tested value, and the estimated degree of composite action was 68%. From both the test results and analytical modeling, the number of screws may be further reduced to 50% or less of the current amount, while maintaining a high level of stiffness. Future work includes testing the composite floor under different screw spacings, investigating the effect of concrete topping, and the connections between floor members and other structural elements.
Online Access
Free
Resource Link
Less detail

312 records – page 1 of 16.