Skip header and navigation

Refine Results By

320 records – page 1 of 16.

Analytical Procedure for Timber-Concrete Composite (TCC) System with Mechanical Connectors

https://research.thinkwood.com/en/permalink/catalogue3119
Year of Publication
2022
Topic
Design and Systems
Material
Timber-Concrete Composite
Application
Floors
Author
Mirdad, Md Abdul Hamid
Khan, Rafid
Chui, Ying Hei
Organization
University of Illinois at Urbana-Champaign
University of Alberta
Editor
Tullini, Nerio
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Keywords
Mechanical Connectors
Progressive Yielding
Effective Bending Stiffness
Deflection
Vibration
Research Status
Complete
Series
Buildings
Summary
In the construction of modern multi-storey mass timber structures, a composite floor system commonly specified by structural engineers is the timber–concrete composite (TCC) system, where a mass timber beam or mass timber panel (MTP) is connected to a concrete slab with mechanical connectors. The design of TCC floor systems has not been addressed in timber design standards due to a lack of suitable analytical models for predicting the serviceability and safety performance of these systems. Moreover, the interlayer connection properties have a large influence on the structural performance of a TCC system. These connection properties are often generated by testing. In this paper, an analytical approach for designing a TCC floor system is proposed that incorporates connection models to predict connection properties from basic connection component properties such as embedment and withdrawal strength/stiffness of the connector, thereby circumventing the need to perform connection tests. The analytical approach leads to the calculation of effective bending stiffness, forces in the connectors, and extreme stresses in concrete and timber of the TCC system, and can be used in design to evaluate allowable floor spans under specific design loads and criteria. An extensive parametric analysis was also conducted following the analytical procedure to investigate the TCC connection and system behaviour. It was observed that the screw spacing and timber thickness remain the most important parameters which significantly influence the TCC system behaviour.
Online Access
Free
Resource Link
Less detail

An experimental study of the stiffness and strength of cross-laminated timber wall-to-floor connections under compression perpendicular to the grain

https://research.thinkwood.com/en/permalink/catalogue3197
Year of Publication
2022
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Schweigler, Michael
Akter, Shaheda T.
Sabaa, Stephen
Bader, Thomas K.
Organization
Linnaeus University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Connections
Keywords
Compression Perpendicular To Grain
Stress Dispersion
Nominal Stiffness
Nominal Strength
Digital Image Correlation
Research Status
Complete
Series
Engineering Structures
Summary
In platform-type multi-story cross-laminated timber (CLT) buildings, gravity loads from upper floors, and vertical reaction forces from horizontal actions, like wind loads, cause substantial compressive forces in the CLT-floor elements. The combination of these high forces with a comparable low compression stiffness and strength perpendicular to the grain of timber, makes the compression perpendicular to the grain (CPG) verification of CLT an important design criterion. In this experimental study, CPG of CLT was investigated by means of typical wall-to-floor connections in CLT platform-type structures. CLT-wall elements were used for load application to transmit forces through the CLT-floor element by CPG. Compared to load application by steel elements, as it commonly is done in experiments, lower stiffness but similar strength were found for CLT walls. The study of different connection types showed the highest stiffness and strength for connections assembled with screws, followed by pure wood-to-wood contact, while connections with acoustic layers between the floor and wall elements showed the lowest stiffness and strength. In addition, these connections were tested for center and edge load position on the CLT-floor element. The strength for center and edge position compared to full surface loaded specimens increased linearly with the activated material volume, as determined by earlier proposed stress dispersion models. The stress dispersion effect was visualized by surface strain measurements using digital image correlation technique. Also, the stiffness increased with the activated material volume. Stress dispersion in the CLT-floor allowed to explain the increase in stiffness and strength with decreasing CLT-wall thickness. Strength values at different strain levels, and stiffness and strength increase factors suitable for the engineering design of CLT structures are provided.
Online Access
Free
Resource Link
Less detail

Behavior of timber-concrete composite with defects in adhesive connection

https://research.thinkwood.com/en/permalink/catalogue3108
Year of Publication
2022
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Organization
Riga Technical University
Publisher
Elsevier
Year of Publication
2022
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Adhesive Connection
Rigid Connection
Conference
ICSI 2021 The 4th International Conference on Structural Integrity
Research Status
Complete
Series
Procedia Structural Integrity
Summary
Rigid timber to concrete connection is the most effective solution for timber-concrete composite members subjected to the flexure which provides full composite action and better structural behaviour. One of the most used technologies to produce glued connection of the timber-concrete composite is “dry” method, which includes gluing together of timber and precast concrete slab. This technique has high risk of forming a poor-quality rigid connection in timber-concrete composite, and there are difficulties in controlling the quality of the glued connection. The effect of the non-glued areas in connection between composite layers on the shear stresses and energy absorption were investigated by finite element method and laboratorian experiment. Three timber-concrete composite panels in combination with carbon fibre reinforced plastic composite tapes in the tension zone with the span 1.8 m were statically loaded till the failure by the scheme of three-point bending. Mid-span displacements were measured in the bending test. One specimen was produced by dry method, by gluing together cross-laminated timber panel and prefabricated concrete panel. Timber-concrete qualitative connection of the other two specimens was provided by the granite chips, which were glued on the surface of the cross-laminated timber by epoxy, and then wet concrete was placed. Dimensions of the crushed granite pieces changes within the limits from 16 to 25 mm. The investigated panel with different amount and sizes of non-glued areas in the timber to concrete connection was numerically modelled. Obtained results shown, that the increase of shear stresses is influenced not so much by a total amount of non-glued areas, but by the size of the individual defective areas. Moreover, large non-glued areas significantly reduce the energy absorption of elements subjected to the flexure, which was observed experimentally for defective panel produced by the classical dry method with almost 4 times larger mid-span displacements than for panel with full composite action provided by the proposed production technology of the timber to concrete rigid connection. So, the proposed technology based on the use of granite chips, provides a high-quality connection between timber and concrete layers, with insignificant ration between possible defect and total connection surface area, which is equal to the area of one granite chips edge.
Online Access
Free
Resource Link
Less detail

Bending properties of deconstructable cross-laminated timber-concrete composite floor elements

https://research.thinkwood.com/en/permalink/catalogue3275
Year of Publication
2022
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Derikvand, Mohammad
Fink, Gerhard
Organization
Aalto University
Publisher
Taylor&Francis Online
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Self-Tapping Screws
Vibration
Stiffness
Disassembly
Research Status
Complete
Series
Wood Material Science & Engineering
Summary
Design for disassembly using deconstructable connections facilitates recycling and reusing of building materials and, therefore, reduces waste management problems at the end of service life. In this regard, a deconstructable timber-concrete composite connector using self-tapping screws has been developed at Aalto University. In the presented research, an experimental investigation was performed to further evaluate the effectiveness of this connector in fabricating deconstructable cross-laminated timber (CLT)-concrete composite floors. For this purpose, several CLT-concrete composite beams were fabricated using 5-layer CLT and low-shrinkage concrete. Each beam contained one row of connectors to represent a strip of a full-scale floor. The vibration performance, bending properties, interface slip, failure modes, and ease of disassembly of the beams were investigated. The results were compared with the ones from a reference group of beams fabricated with regular screws. Overall, the deconstructable beams performed exceptionally well by attaining 98.5% of the average bending stiffness of the regular beams. The load-carrying capacity was also similar but governed by the CLT plate. The vibration characteristics were comparable in both groups. After the bending test, the deconstructable beams were disassembled. Although the beams had been exposed to unproportionally large deformations under the bending load, the disassembly process was performed successfully.
Online Access
Free
Resource Link
Less detail

Calculating structural fire resistance of wood-frame assemblies

https://research.thinkwood.com/en/permalink/catalogue3200
Year of Publication
2022
Topic
Fire
Application
Floors
Walls
Author
Dagenais, Christian
Chorlton, Bronwyn
Chen, Zhiyong
Organization
FPInnovations
Year of Publication
2022
Application
Floors
Walls
Topic
Fire
Keywords
Small Cross Section
Light Wood Frame
Research Status
Complete
Series
InfoNote
Summary
This InfoNote summarizes the verification and validation that the current design requirements of Annex B of CSA O86 can also be applied to small framing members used in unprotected and protected lightweight wood-frame assemblies, e.g., walls and floors. With minor editorial changes, the scope of application of Annex B of CSA O86 could include all wood and wood-based products listed in CSA O86, regardless of their original and residual dimensions.
Online Access
Free
Resource Link
Less detail

CLT Diaphragm Design for Wind and Seismic Resistance

https://research.thinkwood.com/en/permalink/catalogue2967
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Breneman, Scott
McDonnell, Eric
Tremayne, Donovan
Houston, Jonas
Gu, Mengzhe
Zimmerman, Reid
Montgomery, Graham
Organization
WoodWorks
Holmes
KPFF Consulting Engineers
Timberlab
Publisher
WoodWorks
Year of Publication
2022
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Seismic
Keywords
Diaphragm
Shear Capacity
Diaphragm Flexibility
Panel-to-Panel Connections
Research Status
Complete
Summary
Cross-laminated timber (CLT) has become increasingly prominent in building construction and can be seen in buildings throughout the world. Specifically, the use of CLT floor and roof panels as a primary gravity force-resisting component has become relatively commonplace. Now, with availability of the 2021 Special Design Provisions for Wind and Seismic (SDPWS 2021) from the American Wood Council (AWC), U.S. designers have a standardized path to utilize CLT floor and roof panels as a structural diaphragm. Prior to publication of this document, projects typically had to receive approval to use CLT as a structural diaphragm on a case-by-case basis from the local Authority Having Jurisdiction (AHJ). This paper highlights important provisions of SDPWS 2021 for CLT diaphragm design and recommendations developed by the authors in the upcoming CLT Diaphragm Design Guide, based on SDPWS 2021.
Online Access
Free
Resource Link
Less detail

Cost Factor Analysis for Timber–Concrete Composite with a Lightweight Plywood Rib Floor Panel

https://research.thinkwood.com/en/permalink/catalogue3100
Year of Publication
2022
Topic
Cost
Material
Timber-Concrete Composite
Application
Floors
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Pakrastins, Leonids
Organization
Riga Technical University
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Cost
Keywords
Adhesive Connection
Plywood Rib Panel
Floor Vibrations
Rigid Connection
Fibre Reinforced Concrete
Research Status
Complete
Series
Buildings
Summary
With the growing importance of the principle of sustainability, there is an increasing interest in the use of timber–concrete composite for floors, especially for medium and large span buildings. Timber–concrete composite combines the better properties of both materials and reduces their disadvantages. The most common choice is to use a cross-laminated timber panel as a base for a timber–concrete composite. But a timber–concrete composite solution with plywood rib panels with an adhesive connection between the timber base and fibre reinforced concrete layer is offered as the more cost-effective constructive solution. An algorithm for determining the rational parameters of the panel cross-section has been developed. The software was written based on the proposed algorithm to compare timber–concrete composite panels with cross-laminated timber and plywood rib panel bases. The developed algorithm includes recommendations of forthcoming Eurocode 5 for timber–concrete composite design and an innovative approach to vibration calculations. The obtained data conclude that the proposed structural solution has up to 73% lower cost and up to 71% smaller self-weight. Thus, the proposed timber–concrete composite construction can meet the needs of society for cost-effective and sustainable innovative floor solutions.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Floor: Analysis of the Acoustic Properties and Radiation Efficiency

https://research.thinkwood.com/en/permalink/catalogue3018
Year of Publication
2022
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Granzotto, Nicola
Marzi, Arianna
Gasparella, Andrea
Organization
Free University of Bozen
Editor
Vasques, César M. A.
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Acoustic Characterization
Sound Radiation Efficiency
Research Status
Complete
Series
Applied Sciences
Summary
Cross-Laminated Timber (CLT) is a building technology that is becoming increasingly popular due to its sustainable and eco-friendly nature, as well as its availability. Nevertheless, CLT presents some challenges, especially in terms of impact noise and airborne sound insulation. For this reason, many studies focus on the vibro-acoustic behavior of CLT building elements, to understand their performance, advantages and limitations. In this paper, a 200 mm CLT floor has been characterized in the laboratory, according to ISO standards, by three noise sources: dodecahedron, standard tapping machine and rubber ball. In order to understand the vibro-acoustic behavior of the CLT floor, measurements through the analysis of sound pressure levels and velocity levels, measured by dedicated sensors, were performed. Analysis was carried out in order to understand what is prescribed by the prediction methods available in the literature and by the simulation software. Then, a specific prediction law for the CLT floor under investigation was derived. Finally, an analysis on sound radiation index is provided to complete the vibro-acoustic study.
Online Access
Free
Resource Link
Less detail

Development and Distribution of Tools for Fast and Accurate CLT Engineering Design

https://research.thinkwood.com/en/permalink/catalogue3172
Year of Publication
2022
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Roofs
Floors
Organization
Equilibrium Consulting Inc.
Year of Publication
2022
Material
CLT (Cross-Laminated Timber)
Application
Walls
Roofs
Floors
Topic
Design and Systems
Keywords
CLT Design Tools
Research Status
In Progress
Notes
Forest Service/USDA Wood Innovations Grants Recipient Point of Contact: Matt Kantner Location: Sandy Springs, Georgia
Summary
While there are many great resources for building owners, contractors, and designers related to mass timber design, there are few tools available for codified design of relatively new mass timber elements for structural engineers. This project intends to help plug this gap by producing, publicly releasing, and promoting two tools that structural engineers can use for fast and accurate design of CLT elements: one tool for bending members (e.g. floors and roofs) and the other for primarily axially loaded members (e.g. walls). Any structural engineer designing CLT members will benefit from these tools –using them will save engineers time, make them more comfortable designing CLT elements, and ultimately will spur use of CLT on building projects. This will benefit the entire forest product value chain from landowners all the way to CLT fabricators and erectors.
Less detail

Development of Creep Deformations during Service Life: A Comparison of CLT and TCC Floor Constructions

https://research.thinkwood.com/en/permalink/catalogue2955
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Binder, Eva
Derkowski, Wit
Bader, Thomas
Organization
Linnæus University
Editor
Brandner, Reinhard
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Serviceability Limit State
Gamma Method
Linear Viscoelasticity
Research Status
Complete
Series
Buildings
Summary
Cross-laminated timber (CLT) slabs in residential buildings need additional weight, e.g., in the form of screeds or gravel layers, to fulfill the criterion for the highest impact-sound class. The additional mass is, however, not exploited for the load bearing behavior, but adds additional weight and leads to an increased height of the floor construction. In this study, such a CLT floor construction with a construction height of 380 mm is compared with a composite slab consisting of a CLT plate with a concrete layer on top with a floor construction height of 330 mm. The timber concrete composite (TCC) slab has a different creep behavior than the CLT slab. Thus, the development of the time-dependent deflections over the service life are of interest. A straightforward hybrid approach is developed, which exploits advanced multiscale-based material models for the individual composite layers and a standardized structural analysis method for the structural slab to model its linear creep behavior. The introduced approach allows to investigate load redistribution between the layers of the composite structure and the evolution of the deflection of the slab during the service life. The investigated slab types show a similar deflection after 50 years, while the development of the deflections over time are different. The CLT slab has a smaller overall stiffness at the beginning but a smaller decrease in stiffness over time than the investigated TCC slab.
Online Access
Free
Resource Link
Less detail

The Dimensional Stability and Bonding Performance of Hybrid CLT Fabricated with Lumber and COSB

https://research.thinkwood.com/en/permalink/catalogue3195
Year of Publication
2022
Topic
Moisture
Application
Floors
Walls
Author
Liang, Zhijun
Chen, Guojun
Wang, Yi
Wang, Zhiqiang
Gong, Meng
Organization
Nanjing Forestry University
University of New Brunswick
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Application
Floors
Walls
Topic
Moisture
Keywords
Hybrid Cross Laminated Timber
Construction Oriented Strand Board
Dimensional Stability
Bonding Performace
Delamination
Research Status
Complete
Series
Buildings
Summary
The differences of physical and mechanical properties of different laminations, such as softwood, hardwood or other structural composite lumber, in hybrid cross-laminated timber (HCLT), lead to their dimensional stability and bonding performance more complex than generic cross-laminated timber (CLT). In this paper, the spruce-pine-fir (SPF) dimension lumber and construction oriented strand board (COSB) were employed to fabricate HCLT. The effects of four configurations and three adhesives on the dimensional stability and bonding performance of CLT and HCLT were evaluated in term of the water absorption (WA), thickness swelling (TS), block shear strength (BSS), wood failure percentage (WFP) and rate of delamination (RD). The results showed that with the increase of the COSB laminations, the WA of HCLT specimens decreased, and the values of TS, BBS and WFP increased. The configuration had a significant influence on the dimensional stability, BBS and WFP of the specimen. The adhesive had a significant influence on the dimensional stability and some bonding performances of the specimen. The phenol resorcinol formaldehyde (PRF) specimens had the lowest average RD value compared with the one-component polyurethane (PUR) and emulsion polymer isocyanate (EPI) specimens. Failures were prone to occur in the middle of the thickness of COSB lamination during block shear and delamination tests. The outcome of this paper could help the engineering application of HLCT.
Online Access
Free
Resource Link
Less detail

Evaluating Laboratory Measurements for Sound Insulation of Cross-Laminated Timber (CLT) Floors: Configurations in Lightweight Buildings

https://research.thinkwood.com/en/permalink/catalogue3157
Year of Publication
2022
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Vardaxis, Nikolaos-Georgios
Hagberg, Delphine Bard
Dahlström, Jessica
Organization
Lund University
Editor
Park, Junhong
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Airborne Sound
Impact Noise
Sound Insulation
Research Status
Complete
Series
Applied Sciences
Summary
Cross-laminated timber (CLT) floors with supplementary layers or floating floors comprise a common solution in new multistory timber structures. However, bare CLT components provide poor sound insulation, especially in low frequencies during structure-borne sound propagation. Thus, floor configurations in wooden buildings deploy more layers for improved acoustic behavior. Twelve contemporary CLT floors were analyzed after laboratory measurements of airborne sound reduction and impact sound transmission utilizing the following indicators: Rw, Rw, 100, Rw, 50, Ln,w, Ln,w,100, and Ln,w,50 (per ISO 10140, ISO 717). An increase in sound insulation was achieved thanks to added total mass and thickness, testing layers of the following: elastic mat for vibration isolation, wool insulation, gypsum boards, plywood, concrete screed, and wooden parquet floor. The results indicate that multilayered CLT floors can provide improvements of up to 22 dB for airborne sound and 32 dB for impact sound indicators compared with the bare CLT slab. Floating floor configurations with dry floor solutions (concrete screed) and wooden parquet floors stand out as the optimal cases. The parquet floor provides a 1–2 dB improvement only for impact sound indicators in floating floor setups (or higher in three cases).
Online Access
Free
Resource Link
Less detail

Experimental and numerical investigations of two-way LVL–concrete composite plates with various support conditions

https://research.thinkwood.com/en/permalink/catalogue3138
Year of Publication
2022
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Jaaranen, Joonas
Fink, Gerhard
Organization
Aalto University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Two-way Plate
Experimental Modal Analysis
Static Load Test
Finite Element Modelling
Research Status
Complete
Series
Engineering Structures
Summary
Design of modern timber floors is often governed by the vibration serviceability requirements. One way to improve vibration serviceability is through the design of two-way floor systems. In this paper, the behaviour of two-way LVL–concrete composite plates and a plate strip is investigated experimentally, with an emphasis on the performance of proposed dovetail joint for connecting the adjacent LVL panels. The investigations consist of the experimental modal analysis and static load deformation tests, performed under multiple support conditions. The results show a significant two-way action, indicated by about 45% higher fundamental natural frequency when four edges are supported instead of two. The point load deflection in the centre of the plate was reduced of about 9%. Furthermore, a numerical model for two-way TCC plates was developed and results show a wide agreement with the experimental behaviour, except for discrepancies related to deflections on the plate edge. The results from the experimental and numerical investigations indicate that the dovetail joint can produce a stiff connection, such that the LVL layer could be regarded as continuous in the connected direction.
Online Access
Free
Resource Link
Less detail

Experimental and numerical modal analysis of a cross laminated timber floor system in different construction states

https://research.thinkwood.com/en/permalink/catalogue3145
Year of Publication
2022
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Kawrza, Michael
Furtmüller, Thomas
Adam, Christoph
Organization
University of Innsbruck
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Floor Construction
Footfall Sound Insulation
Modal Analysis
Optimization
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper addresses the vibration characteristics of a cross laminated timber (CLT) floor in a residential building during three construction states. Experimental modal analyses are carried out on the blank CLT slab, on the slab with added drywall ceiling, and on the slab with drywall ceiling and added floating screed. A reliable numerical model of the system is created with the means of a finite element model updating procedure. This model shows that some experimentally determined modes can be attributed to the dynamic interaction with the shaker used for excitation during the tests. In the finite element model, this effect can subsequently be eliminated. Based on the validated numerical model, the impact of various parameters of the floor construction on the low-frequency footfall sound insulation is investigated.
Online Access
Free
Resource Link
Less detail

Experimental and numerical study on the bending response of a prefabricated composite CLT-steel floor module

https://research.thinkwood.com/en/permalink/catalogue3047
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Author
Owolabi, David
Loss, Cristiano
Organization
University of British Columbia
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Composite Floors
Hybrid Construction
Mass Timber
Cross-laminated Timber
Prefabricated Construction
Low-Carbon Structures
Bending Stiffness
Research Status
Complete
Series
Engineering Structures
Summary
Cross-laminated timber (CLT) is one of the most widely utilized mass timber products for floor construction given its sustainability, widespread availability, ease of fabrication and installation. Composite CLT-based assemblies are emerging alternatives to provide flooring systems with efficient design and optimal structural performance. In this paper, a novel prefabricated CLT-steel composite floor module is investigated. Its structural response to out-of-plane static loads is assessed via 6-point bending tests and 3D finite-element computational analysis. For simply supported conditions, the results of the investigation demonstrate that the floor attains a high level of composite efficiency (98%), and its bending stiffness is about 2.5 times those of its components combined. Within the design load range, the strain diagrams are linear and not affected by the discontinuous arrangement and variable spacing of the shear connectors. The composite floor module can reach large deflection without premature failure in the elements or shear connectors, with plasticity developed in the cold-formed steel beams and a maximum attained load 3.8 times its ultimate limit state design load. The gravity design of the composite module is shown to be governed by its serviceability deflection requirements. However, knowledge gaps still exist on the vibration, fire, and long-term behaviour of this composite CLT-steel floor system.
Online Access
Free
Resource Link
Less detail

Experimental Investigation on Bending Behavior of Innovative Poplar LVL Floor Diaphragms

https://research.thinkwood.com/en/permalink/catalogue3213
Year of Publication
2022
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Author
Sun, Xufeng
Wang, Changyuan
Liu Yan
Ma Hongwei
Tang, Shukai
Organization
Yangzhou University
Editor
Zhang, Nan
Chen, Lingkun
Zhang, Qinghua
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Topic
Mechanical Properties
Keywords
Poplar LVL
Floor Diaphragm
Orthogonal Rib Beam
Bending Behavior
Experimental Tests
Research Status
Complete
Series
Sustainability
Summary
Poplar laminated veneer lumber (poplar LVL) is made of fast-growing poplar veneer and structural adhesive, which owns the advantages of sustainability and stable quality. Here an innovative poplar LVL floor diaphragm is presented, mainly made up of orthogonal rib beams fitted together using L-shape steel connectors. The paper mainly deals with an experimental study on the bending behavior of the floor under transverse uniform load. Full-scale testing on eight 3.6 m × 4.8 m specimens shows that the damage phenomena of the floor mainly exhibited as the separation between the rib beams and pulling out from the rib beam for the tapping screw. Though some local damage phenomena appeared before the preset maximum loading level, the load-deflection curves basically kept linear for most of the specimens. Under the service load level of 2.5 kN/m2, the distribution of deflection and strain for the full-length rib beam substantially exhibited the characteristic of a two-way slab. In contrast, for the segmented rib beam, the situation was much more complex. Due to the parametric design of the specimens, testing results illustrated that the rib beam height played the most important role in floor stiffness. Next was the sheathing panel, while the role of segmented rib beam spacing was relatively unremarkable. At last, a revised pseudo-plate method was proposed to evaluate the maximum deflection of the novel floor, which considered the composite action by rigidity factors.
Online Access
Free
Resource Link
Less detail

Influence of the connector shape parameters in the structural behaviour of the adhesive-free timber floor panels

https://research.thinkwood.com/en/permalink/catalogue3125
Year of Publication
2022
Topic
Mechanical Properties
Application
Floors
Author
Moltini, Gonzalo
Baño, Vanesa
Organization
Universidad de la República
Publisher
Elsevier
Year of Publication
2022
Format
Conference Paper
Application
Floors
Topic
Mechanical Properties
Keywords
Adhesive-free Connection
Structural Yield
Timber-to-timber Panels
Conference
ICSI 2021 The 4th International Conference on Structural Integrity
Research Status
Complete
Series
Procedia Structural Integrity
Summary
Timber-to-timber panels (TTPs) are adhesive- and steel-free structural components formed by carpentry joints of Scots pine to be used as floors. A numerical model simulating bending tests on TTPs and considering timber as an orthotropic and bi-modulus material was validated from experimental results of deflection, and rolling shear strength. Since the serviceability and ultimate limit states of the TTPs was mainly defined by the rolling shear properties of the connectors, this paper aims to study the influence of different connector shape parameters in the structural behavior of the panels. For that, values of the connector height (hc varying between 40 and 100 mm), width (b1 varying between 40 and 100 mm) and the dove-tail angle (a varying between 45º and 75º) were introduced in the numerical models to obtain both failure load and stiffness for different span TTPs. Results showed that TTP deflection and shear stresses on the connectors decreases with the increase of the height and the width of the connectors. As the width of the connector (b1) increases, the maximum shear stress decreases up to 42%. For a same connector height, the angle of the dove-tail shows low influence in the maximum shear stress; however, it plays a greater role in the deflection of the panels. For the connectors of 40 mm of height TTP deflection was barely influenced by connector width; however, for higher connectors (hc = 60 mm), TTP deflection decreased up to 41% as width increases. So, new TTPs configurations varying the connector parameters showed an improvement on the deflection and on the shear stresses of the connectors.
Online Access
Free
Resource Link
Less detail

Mechanical Behavior of GFRP Dowel Connections to Cross Laminated Timber-CLT Panels

https://research.thinkwood.com/en/permalink/catalogue2957
Year of Publication
2022
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Almeida, Amanda
Moura, Jorge
Organization
Maringá State University
Londrina State University
Editor
Knapic, Sofia
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Connections
Keywords
GFRP
Dowel-Type Connections
Panel-to-Panel
Design Methodology
Push-Out Tests
Research Status
Complete
Series
Forests
Summary
Sustainability issues are driving the civil construction industry to adopt and study more environmentally friendly technologies as an alternative to traditional masonry/concrete construction. In this context, plantation wood especially stands out as a constituent of the cross-laminated timber (CLT) system, laminated wood glued in perpendicular layers forming a solid-wood structural panel. CLT panels are commonly connected by screws or nails, and several authors have investigated the behavior of these connections. Glass-fiber-reinforced polymer (GFRP) dowels have been used to connect wooden structures, and have presented excellent performance results; however, they have not yet been tested in CLT. Therefore, the objective of this study is to analyze the glass-fiber-reinforced polymer (GFRP)-doweled connections between CLT panels. The specimens were submitted to monotonic shear loading, following the test protocol described in EN 26891-1991. Two configurations of adjacent five-layer panels were tested: flat-butt connections with 45° dowels (x, y, and z axes), and half-lap connections with 90° dowels. The results were evaluated according to the mechanical connection properties of strength, stiffness, and ductility ratio. The results showed higher stiffness for butt-end connections. In terms of strength, the half-lap connections were stronger than the butt-end connections.
Online Access
Free
Resource Link
Less detail

Optimal Design and Competitive Spans of Timber Floor Joists Based on Multi-Parametric MINLP Optimization

https://research.thinkwood.com/en/permalink/catalogue3041
Year of Publication
2022
Topic
Cost
Application
Floors
Author
Jelušic, Primož
Kravanja, Stojan
Organization
University of Maribor
Editor
Giannopoulos, Georgios
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Application
Floors
Topic
Cost
Keywords
Structural Optimization
Cost Optimization
Discrete Optimization
Mixed-Integer Nonlinear Programming
MINLP
Timber Floor Joists
Research Status
Complete
Series
Materials
Summary
This study investigates the optimization of the design of timber floor joists, taking into account the self-manufacturing costs and the discrete sizes of the structure. This non-linear and discrete class of optimization problem was solved with the multi-parametric mixed-integer non-linear programming (MINLP). An MINLP optimization model was developed. In the model, an accurate objective function of the material and labor costs of the structure was subjected to design, strength, vibration and deflection (in)equality constraints, defined according to Eurocode regulations. The optimal design of timber floor joists was investigated for different floor systems, different materials (sawn wood and glulam), different load sharing systems, different vertical imposed loads, different spans, and different alternatives of discrete cross-sections. For the above parameters, 380 individual MINLP optimizations were performed. Based on the results obtained, a recommended optimal design for timber floor joists was developed. Engineers can select from the recommendations the optimal design system for a given imposed load and span of the structure. Economically suitable spans for timber floor joists structures were found. The current knowledge of competitive spans for timber floor joists is extended based on cost optimization and Eurocode standards.
Online Access
Free
Resource Link
Less detail

Optimization framework for cost and carbon emission of timber floor elements

https://research.thinkwood.com/en/permalink/catalogue3001
Year of Publication
2022
Topic
Cost
Environmental Impact
Application
Floors
Author
Nesheim, Sveinung
Mela, Kristo
Malo, Kjell
Labonnote, Nathalie
Organization
Norwegian University of Science and Technology
Tampere University
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Application
Floors
Topic
Cost
Environmental Impact
Keywords
Cost Optimization
Carbon Emission Reduction
Timber Floor
Eurocode 5
Research Status
Complete
Series
Engineering Structures
Summary
Long-span timber floor elements increase the adaptability of a building and they exhibit a significant market potential. High cost of the floor elements is a challenge, and the timber sector is under substantial pressure to find more economical solutions without weakening otherwise favourable environmental performance. The range of technical timber-based materials and components, structural typologies, overlays and ceiling systems represent an immense solution space when searching for a competitive design for a specific building application. Finding the optimum solution requires a computational procedure. In this study a recent development for the accounting of manufacturing resources for timber elements is utilized to build an optimization framework for cost and ECO2 minimisation of timber floor elements finalized at the factory gate. The design of the element is formulated as a discrete optimization problem which is solved by a mixed-integer sequential linearization procedure. Various material combinations and constraint combinations are treated. The optimization framework provides a tool for rapid design exploration that can be used in timber floor design situations. The results of the calculations carried out in this study provide insight on the general trends of optimum floor elements. The optimization model is used to analyse the characteristics of the optimum designs, and a comparison between the current and the proposed method for the second generation of Eurocode 5 is chosen as a vehicle for demonstrating achievable implications.
Online Access
Free
Resource Link
Less detail

320 records – page 1 of 16.