Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1874
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls

Advanced Wood Product Manufacturing Study for Cross-Laminated Timber Acceleration in Oregon & SW Washington, 2017

https://research.thinkwood.com/en/permalink/catalogue715
Year of Publication
2017
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
General Application
Organization
Oregon BEST
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Market and Adoption
Keywords
Market
US
Economic Impact
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Apparent Sound Insulation in Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1276
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Connection and Performance of Two-Way CLT Plates Phase II

https://research.thinkwood.com/en/permalink/catalogue2086
Year of Publication
2019
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
PSL (Parallel Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
General Application
Author
Zhang, Chao
Asselstine, Julian
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
PSL (Parallel Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
General Application
Topic
Mechanical Properties
Connections
Keywords
Deflection
Two-Way
Bending
Finite Element Method
Model
Language
English
Research Status
Complete
Summary
In Phase I of Developing Large Span Two Way CLT Floor System (2017-18) we studied the performance of a steel plate connection system for the minor direction of CLT plates. The connected specimens had higher stiffness and strength compared to intact members under bending. In Phase II (2018-19) we designed and tested another connector based on...
Online Access
Free
Resource Link
Less detail

Connections for Stackable Heavy Timber Modules in Midrise to Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue2087
Year of Publication
2019
Topic
Connections
Design and Systems
Seismic
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Chao
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Design and Systems
Seismic
Keywords
Modular
Intra-module Connection
Inter-module Vertical Connection
Inter-module horizontal Connection
Mid-Rise
Tall Wood
Screws
Load Transfer
Steel Angle Bracket
Stiffness
Strength
Ductility
Language
English
Research Status
Complete
Summary
In Phase I (2018-19) of this project on Prefabricated Heavy Timber Modular Construction, three major types of connections used in a stackable modular building were studied: intramodule connection, inter-module vertical connection, and inter-module horizontal connection. The load requirement and major design criteria were identified...
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Buildings: A WBLCA Case Study Series

https://research.thinkwood.com/en/permalink/catalogue2360
Year of Publication
2019
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Author
Kwok, Alison
Zalusky, Hannah
Rasmussen, Linsday
Rivera, Isabel
McKay, Hannah
Organization
TallWood Design Institute
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Topic
Environmental Impact
Design and Systems
Keywords
LCA
Life-Cycle Assessment
Case Study
Embodied Carbon
Language
English
Research Status
Complete
Summary
This series highlights five whole building life cycle assessments (WBLCAs) of buildings incorporating the building material known as cross-laminated timber (CLT) into some or all of their structure, using a primary cradle-to-grave system boundary. This case study series will serve as an educational resource for academics, professionals, and CLT project stakeholders. While there is some uncertainty about the best way to reduce greenhouse gas emissions from architecture and construction, using CLT and other wood building materials is one possible means to reduce the emissions associated with a building’s materials. When forests are managed sustainably, wood construction materials can contribute to climate change mitigation goals as an indefinite carbon store and as a replacement of other fossil-fuel intensive materials. WBLCA is an assessment method to estimate the environmental impacts of buildings; this series offers insight into the current possibilities and limitations of WBLCA for CLT buildings. The series begins with background information on WBLCA methods and CLT, a review of previously published CLT building WBLCAs, and a life cycle assessment of an individual CLT wall element using the WBLCA softwares Tally® and Athena Impact Estimator for Buildings (Athena IE).
Online Access
Free
Resource Link
Less detail

Development of a Ready-to- Assemble Tornado Shelter from Cross-Laminated Timber (CLT): Impact and Wind Pressure Testing

https://research.thinkwood.com/en/permalink/catalogue2099
Year of Publication
2019
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Falk, Robert
Bridwell, James
Williamson, Tom
Black, Todd
Organization
Forest Products Laboratory
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Wind
Keywords
Tornado
Residential
Lateral Load
Uplift Test
Language
English
Research Status
Complete
Summary
The development and use of tornado shelters have helped reduce loss of human life associated with extreme weather events. Currently, the majority of shelters are built from either steel or concrete. The development of the crosslaminated timber (CLT) industry in the United States has provided an ideal wood product to resist the debris impact...
Online Access
Free
Resource Link
Less detail

Development of a Smart Timber Bridge (Phase III): Moisture and Strain Sensor Investigation for Historic Covered Bridges

https://research.thinkwood.com/en/permalink/catalogue2182
Year of Publication
2019
Topic
Moisture
Material
Glulam (Glue-Laminated Timber)
Other Materials
Application
Bridges and Spans
Author
Phares, Brent
Pence, Trevor
Wacker, James
Hosteng, Travis
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
Glulam (Glue-Laminated Timber)
Other Materials
Application
Bridges and Spans
Topic
Moisture
Keywords
Moisture Content
Sensor
Strain
Reliability
Accuracy
Language
English
Research Status
Complete
Series
General Technical Report
Summary
Nationwide, bridges are deteriorating at a rate faster than they can be rehabilitated and maintained. This has resulted in a search for new methods to rehabilitate, repair, manage, and construct bridges. As a result, structural health monitoring and smart structure concepts have emerged to help improve bridge management. In the case of timber bridges, however, a limited amount of research as been conducted on long-term structural health monitoring solutions, and this is especially true in regards to historic covered timber bridges. To date, evaluation efforts of timber bridges have focused primarily on visual inspection data to determine the structural integrity of timber structures. To fill this research need and help improve timber bridge inspection and management strategies, a 5-year research plan to develop a smart timber bridge structure was undertaken. The overall goal of the 5-year plan was to develop a turnkey system to analyze, monitor, and report on the performance and condition of timber bridges. This report outlines one phase of the 5-year research plan and focuses on developing and attaching moisture sensors onto timber bridge components. The goal was to investigate the potential for sensor technologies to reliably monitor the in situ moisture content of the timber members in historic covered bridges, especially those recently rehabilitated with glulam materials. The timber-specific moisture sensors detailed in this report and the data collected from them will assist in advancing the smart timber bridge.
Online Access
Free
Resource Link
Less detail

Durable Timber Bridges - Final Report and Guidelines

https://research.thinkwood.com/en/permalink/catalogue2133
Year of Publication
2017
Topic
Design and Systems
Moisture
Serviceability
Material
Timber (unspecified)
Glulam (Glue-Laminated Timber)
Application
Bridges and Spans

Enabling Prefabricated Timber Building Systems in Commercial Construction

https://research.thinkwood.com/en/permalink/catalogue1927
Year of Publication
2017
Topic
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bylund, David
Organization
Centre for Sustainable Architecture in Wood
Publisher
Forest & Wood Products Australia
Year of Publication
2017
Country of Publication
Australia
Format
Report
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Prefabrication
Commercial
NCC
Mid-Rise
Language
English
Research Status
Complete
ISBN
978-1-925213-58-4
Summary
This project identifies drivers for, and barriers to, the increased use of prefabricated timber building (PTB) systems in Class 2 to 9 commercial buildings, such as apartments, hotels, office buildings and schools. PTB systems in Australia are in a formative stage and yet to achieve broad acceptance in the marketplace as a conventional method of building. Opportunities for PTB systems can use timber’s well-established benefits such as high strength-to-weight ratio; design and construction flexibility; general environmental credentials including carbon sequestration; and prefabrication’s suitability for use on brown-field, restricted access and difficult sites and developments. In addition legislative constraints have now been largely removed (e.g. through changes to the 2016 National Construction Code). An increase in large scale mid-rise prefabricated buildings, and with the increasing nationalisation and internationalisation of the top tier building companies, suggests market acceptance will grow as PTB buildings are seen as ‘normal’.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.