Skip header and navigation

10 records – page 1 of 1.

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1874
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls

Behaviour of Cross-laminated Timber Wall Systems Under Monotonic Lateral Loading

https://research.thinkwood.com/en/permalink/catalogue2404
Year of Publication
2019
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
McPolin, Daniel
Hughes, C.
McGetrick, P.
McCrum, D.
Publisher
Taylor&Francis Online
Year of Publication
2019
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Keywords
Tall Timber Buildings
Lateral Load
Earthquake
Language
English
Research Status
Complete
Series
Journal of Structural Integrity and Maintenance
Online Access
Free
Resource Link
Less detail

Bending and Rolling Shear Properties of Cross-Laminated Timber Fabricated with Canadian Hemlock

https://research.thinkwood.com/en/permalink/catalogue2407
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Wood Building Systems

Computational Modelling of Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2421
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors

Cross-Laminated Timber Buildings: A WBLCA Case Study Series

https://research.thinkwood.com/en/permalink/catalogue2360
Year of Publication
2019
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Author
Kwok, Alison
Zalusky, Hannah
Rasmussen, Linsday
Rivera, Isabel
McKay, Hannah
Organization
TallWood Design Institute
Year of Publication
2019
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Walls
Topic
Environmental Impact
Design and Systems
Keywords
LCA
Life-Cycle Assessment
Case Study
Embodied Carbon
Language
English
Research Status
Complete
Summary
This series highlights five whole building life cycle assessments (WBLCAs) of buildings incorporating the building material known as cross-laminated timber (CLT) into some or all of their structure, using a primary cradle-to-grave system boundary. This case study series will serve as an educational resource for academics, professionals, and CLT project stakeholders. While there is some uncertainty about the best way to reduce greenhouse gas emissions from architecture and construction, using CLT and other wood building materials is one possible means to reduce the emissions associated with a building’s materials. When forests are managed sustainably, wood construction materials can contribute to climate change mitigation goals as an indefinite carbon store and as a replacement of other fossil-fuel intensive materials. WBLCA is an assessment method to estimate the environmental impacts of buildings; this series offers insight into the current possibilities and limitations of WBLCA for CLT buildings. The series begins with background information on WBLCA methods and CLT, a review of previously published CLT building WBLCAs, and a life cycle assessment of an individual CLT wall element using the WBLCA softwares Tally® and Athena Impact Estimator for Buildings (Athena IE).
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Shear Walls in Balloon Construction: Seismic Performance of Steel Connections

https://research.thinkwood.com/en/permalink/catalogue2413
Year of Publication
2019
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls

Effect of Realistic Boundary Conditions on the Behaviour of Cross-Laminated Timber Elements Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue2361
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Cote, Dominic
Publisher
University of Ottawa
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Seismic
Keywords
Connections
Seismic Load
Blast Loads
Fasteners
Language
English
Research Status
Complete
Summary
Cross-laminated timber (CLT) is an emerging engineered wood product in North America. Past research effort to establish the behaviour of CLT under extreme loading conditions has focussed CLT slabs with idealized simply-supported boundary conditions. Connections between the wall and the floor systems above and below are critical to fully describing the overall behaviour of CLT structures when subjected to blast loads. The current study investigates the effects of “realistic” boundary conditions on the behaviour of cross-laminated timber walls when subjected to simulated out-of-plane blast loads. The methodology followed in the current research consists of experimental and analytical components. The experimental component was conducted in the Blast Research Laboratory at the University of Ottawa, where shock waves were applied to the specimens. Configurations with seismic detailing were considered, in order to evaluate whether existing structures that have adequate capacities to resist high seismic loads would also be capable of resisting a blast load with reasonable damage. In addition, typical connections used in construction to resist gravity and lateral loads, as well as connections designed specifically to resist a given blast load were investigated. The results indicate that the detailing of the connections appears to significantly affect the behaviour of the CLT slab. Typical detailing for platform construction where long screws connect the floor slab to the wall in end grain performed poorly and experienced brittle failure through splitting in the perpendicular to grain direction in the CLT. Bearing type connections generally behaved well and yielding in the fasteners and/or angles brackets meant that a significant portion of the energy was dissipated there reducing the energy imparted on the CLT slab significantly. Hence less displacement and thereby damage was observed in the slab. The study also concluded that using simplified tools such as single-degree-of-freedom (SDOF) models together with current available material models for CLT is not sufficient to adequately describe the behaviour and estimate the damage. More testing and development of models with higher fidelity are required in order to develop robust tools for the design of CLT element subjected to blast loading.
Online Access
Free
Resource Link
Less detail

Elevated Temperature Effects on the Shear Performance of a Cross-Laminated Timber (CLT) Wall-to-Floor Bracket Connection

https://research.thinkwood.com/en/permalink/catalogue2106
Year of Publication
2019
Topic
Fire
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors

Environmental Performances of a Timber-Concrete Prefabricated Composite Wall System

https://research.thinkwood.com/en/permalink/catalogue1343
Year of Publication
2017
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Walls

Evaluation of Bending Performance of Nail Laminated and Dowel Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2309
Year of Publication
2019
Topic
Design and Systems
Mechanical Properties
Material
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Roofs
Bridges and Spans
Wood Building Systems
General Application

10 records – page 1 of 1.