Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue1874
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls

Acoustic Testing and Wood Supply for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1830
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Organization
ARUP
StructureCraft
InterTek
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Walls
Roofs
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Sound Transmission
Impact Noise Transmission
Concrete Topping
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Shop Drawings and Details for Tests B. Sound and Impact Test Results Summary C. Test 1: Sound and Impact Transmission Test - CLT D. Test 2: Sound and Impact Transmission Test - Concrete Topping E. Test 3a: Sound and Impact Transmission Test - Marmoleum F. Test 3b: Sound and Impact Transmission Test - Marmoleum G. Test 4: Sound and Impact Transmission Test - Carpet H. Test 5a: Sound and Impact Transmission Test - Luxury Vinyl Plank I. Test 5b: Sound and Impact Transmission Test - Luxury Vinyl Plank J. Test 6: Sound and Impact Transmission Test - Mechanical Roof
Online Access
Free
Resource Link
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High-Rise Project

https://research.thinkwood.com/en/permalink/catalogue1710
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors

Apparent Sound Insulation in Wood-Framed Buildings

https://research.thinkwood.com/en/permalink/catalogue1952
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Walls
Floors

Bending and Rolling Shear Properties of Cross-Laminated Timber Fabricated with Canadian Hemlock

https://research.thinkwood.com/en/permalink/catalogue2407
Year of Publication
2019
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Wood Building Systems

Carbon Value Engineering: Integrated Carbon and Cost Reduction Strategies for Building Design

https://research.thinkwood.com/en/permalink/catalogue2268
Year of Publication
2019
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Author
Robati, Mehdi
Oldfield, Philip F.
Nezhad, Ali Akbar
Carmichael, David
Organization
UNSW Sydney
Multiplex Australasia
Publisher
Cooperative Research for Low Carbon Living
Year of Publication
2019
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Topic
Environmental Impact
Cost
Keywords
Value Engineering
Embodied Carbon
Hybrid Life Cycle Assessment
Capital Cost
Environmentally-extended Input-Output Analysis
Language
English
Research Status
Complete
Summary
The research presents a Carbon Value Engineering framework. This is a quantitative value analysis method, which not only estimates cost but also considers the carbon impact of alternative design solutions. It is primarily concerned with reducing cost and carbon impacts of developed design projects; that is, projects where the design is already a completed to a stage where a Bill of Quantity (BoQ) is available, material quantities are known, and technical understanding of the building is developed. This research demonstrates that adopting this integrated carbon and cost method was able to reduce embodied carbon emissions by 63-267 kgCO2-e/m2 (8-36%) when maintaining a concrete frame, and 72-427 kgCO2-e/m2 (10-57%) when switching to a more novel whole timber frame. With a GFA of 43,229 m2 these savings equate to an overall reduction of embodied carbon in the order of 2,723 – 18,459 tonnes of CO2-e. Costs savings for both alternatives were in the order of $127/m2 which equates to a 10% reduction in capital cost. For comparison purposes the case study was also tested with a high-performance façade. This reduced lifecycle carbon emissions in the order of 255 kgCO2-e/m2, over 50 years, but at an additional capital cost, due to the extra materials. What this means is strategies to reduce embodied carbon even late in the design stage can provide carbon savings comparable, and even greater than, more traditional strategies to reduce operational emissions over a building’s effective life.
Online Access
Free
Resource Link
Less detail

Computational Modelling of Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2421
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors

Effect of Realistic Boundary Conditions on the Behaviour of Cross-Laminated Timber Elements Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue2361
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Cote, Dominic
Publisher
University of Ottawa
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Seismic
Keywords
Connections
Seismic Load
Blast Loads
Fasteners
Language
English
Research Status
Complete
Summary
Cross-laminated timber (CLT) is an emerging engineered wood product in North America. Past research effort to establish the behaviour of CLT under extreme loading conditions has focussed CLT slabs with idealized simply-supported boundary conditions. Connections between the wall and the floor systems above and below are critical to fully describing the overall behaviour of CLT structures when subjected to blast loads. The current study investigates the effects of “realistic” boundary conditions on the behaviour of cross-laminated timber walls when subjected to simulated out-of-plane blast loads. The methodology followed in the current research consists of experimental and analytical components. The experimental component was conducted in the Blast Research Laboratory at the University of Ottawa, where shock waves were applied to the specimens. Configurations with seismic detailing were considered, in order to evaluate whether existing structures that have adequate capacities to resist high seismic loads would also be capable of resisting a blast load with reasonable damage. In addition, typical connections used in construction to resist gravity and lateral loads, as well as connections designed specifically to resist a given blast load were investigated. The results indicate that the detailing of the connections appears to significantly affect the behaviour of the CLT slab. Typical detailing for platform construction where long screws connect the floor slab to the wall in end grain performed poorly and experienced brittle failure through splitting in the perpendicular to grain direction in the CLT. Bearing type connections generally behaved well and yielding in the fasteners and/or angles brackets meant that a significant portion of the energy was dissipated there reducing the energy imparted on the CLT slab significantly. Hence less displacement and thereby damage was observed in the slab. The study also concluded that using simplified tools such as single-degree-of-freedom (SDOF) models together with current available material models for CLT is not sufficient to adequately describe the behaviour and estimate the damage. More testing and development of models with higher fidelity are required in order to develop robust tools for the design of CLT element subjected to blast loading.
Online Access
Free
Resource Link
Less detail

Elevated Temperature Effects on the Shear Performance of a Cross-Laminated Timber (CLT) Wall-to-Floor Bracket Connection

https://research.thinkwood.com/en/permalink/catalogue2106
Year of Publication
2019
Topic
Fire
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors

Encapsulated Mass Timber Construction - Cost Comparison Canada: Construction, Time & Maintenance Cost-Benefit Report

https://research.thinkwood.com/en/permalink/catalogue2359
Year of Publication
2017
Topic
Cost
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Columns
Floors
Organization
Hanscomb
Publisher
National Research Council Canada
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Columns
Floors
Topic
Cost
Keywords
Encapsulated Mass Timber Construction
Building Code
Time
Construction Time
Construction Cost
Maintenance Cost
Cost-Benefit Analysis
Language
English
Research Status
Complete
Summary
The Task Group on Combustible Construction is in the process of evaluating a proposed code change request related to buildings of encapsulated mass timber construction (EMTC). As part of the analysis of the code change request, an impact analysis is required that includes a cost-benefit analysis. Hanscomb was hired to provide a cost-benefit analysis and to compare the estimated value of the following: 1. The cost of constructing a building of mass timber (unprotected) versus a building constructed of encapsulated mass timber (e.g. mass timber protected with a double layer of Type X gypsum board) versus a traditional concrete and steel building. 2. The time to build a building of mass timber construction (unprotected) versus a building of encapsulated mass timber construction versus a traditional concrete and steel building. 3. The annual maintenance costs of building of mass timber construction versus a building of encapsulated mass timber construction versus a traditional concrete and steel building. For the purposes of this study two sets of conceptual floor plans and elevations have been created: 1. A 12 storey building with a Group C major occupancy (residential) where each storey is 6,000 m2 in floor area. 2. A 12 storey building with a Group D major occupancy (office) where each storey is 7,200 m2 in floor area.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.