Skip header and navigation

10 records – page 1 of 1.

The Case for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue835
Edition
Second
Year of Publication
2017
Topic
General Information
Cost
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Organization
Michael Green Architecture
Edition
Second
Year of Publication
2017
Country of Publication
Canada
Format
Book
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
General Information
Cost
Environmental Impact
Design and Systems
Keywords
FFTT
Tall Wood
Language
English
Research Status
Complete
Summary
The report describes a new structural system in wood that is the first significant challenger to concrete and steel structures since their inception in tall building design more than a century ago. The introduction of these ideas is fundamentally driven by the need to find safe, carbon-neutral and sustainable alternatives to the incumbent structural materials of the urban world. The market for these ideas is quite simply enormous. The proposed solutions have significant capacity to revolutionize the building industry to address the major challenges of climate change, urbanization, sustainable development and world housing needs.
Online Access
Free
Resource Link
Less detail

Comparative Energy Consumption Study on Tall Cross Laminated Timber Buildings for U.S. Climates

https://research.thinkwood.com/en/permalink/catalogue1636
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Khavari, Ali
Tabares-Velasco, Paulo
Zhao, Shichun
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
US
Energy Efficiency
Internal Loads
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3134-3141
Summary
Tall building (higher than 8 stories) construction using Cross laminated timber (CLT) is a relatively new trend for urban developments around the world. In the U.S., there is great interest in utilizing the potential of this new construction material. By analyzing a ten-story condominium building model constructed using building energy...
Online Access
Free
Resource Link
Less detail

Cross Laminated Timber (CLT): Overview and Development

https://research.thinkwood.com/en/permalink/catalogue666
Year of Publication
2016
Topic
Market and Adoption
General Information
Material
CLT (Cross-Laminated Timber)
Application
General Application

Cross-Laminated Timber: Design and Performance

https://research.thinkwood.com/en/permalink/catalogue2271
Year of Publication
2017
Topic
Design and Systems
Fire
Acoustics and Vibration
Energy Performance
Environmental Impact
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Editor
Exova BM TRADA
Publisher
TRADA
Year of Publication
2017
Country of Publication
United Kingdom
Format
Book
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Acoustics and Vibration
Energy Performance
Environmental Impact
Mechanical Properties
Language
English
Research Status
Complete
ISBN
978-1909594630
Summary
This book has been written to cover the design and performance of CLT within construction. Chapter 1 showcases its uses for architects and building designers. Chapter 2 focuses on design principles and Chapter 3 covers CLT performance, including structural design, fire performance, acoustics, thermal performance, durability, appearance, and sustainability. Chapter 4 concludes the book with thirteen case studies based on several building types. Highly illustrated with photos and technical drawings, this book demonstrates the versatility of CLT as a sustainable, engineered timber solution and will assist architects, engineers and their clients looking to work with this material.
Online Access
Payment Required
Resource Link
Less detail

Design of an Energy-Efficient and Cost-Effective Cross Laminated Timber (CLT) House in Waikuku Beach, New Zealand

https://research.thinkwood.com/en/permalink/catalogue2364
Year of Publication
2016
Topic
Design and Systems
Cost
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Bournique, Guillaume
Publisher
KTH Royal Institute of Technology
Year of Publication
2016
Country of Publication
Sweden
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Cost
Energy Performance
Keywords
Energy Efficiency
Cost-Competitive
Residential
Housing
Energy Consumption
Language
English
Research Status
Complete
Summary
The Canterbury earthquakes in 2010 and 2011 caused significant damage to the Christchurch building stock. However, it is an opportunity to build more comfortable and energy efficient buildings. Previous research suggests a tendency to both under heat and spot heat, meaning that New Zealand dwellings are partly heated and winter indoor temperatures do not always meet the recommendations of the World Health Organization. Those issues are likely to be explained by design deficiency, poor thermal envelope, and limitations of heating systems. In that context, the thesis investigates the feasibility of building an energy efficient and cost-competitive house in Christchurch. Although capital costs for an energy efficient house are inevitably higher, they are balanced with lower operating costs and improved thermal comfort. The work is supported by a residential building project using Cross Laminated Timber (CLT) panels. This atypical project is compared with a typical New Zealand house (reference building), regarding both energy efficiency and costs. The current design of the CLT building is discussed according to passive design strategies, and a range of improvements for the building design is proposed. This final design proposal is determined by prioritizing investments in design options having the greatest effect on the building overall energy consumption. Building design features include windows efficiencies, insulation levels, optimized thermal mass, lighting fixture, as well as HVAC and domestic hot water systems options. The improved case for the CLT building is simulated having a total energy consumption of 4,860kWh/year, which corresponds to a remarkable 60% energy savings over the baseline. The construction cost per floor area is slightly higher for the CLT building, about 2,900$/m² against 2,500$/m² for the timber framed house. But a life cycle cost analysis shows that decreased operating costs makes the CLT house cost-competitive over its lifetime. The thesis suggests that the life cycle cost of the CLT house is 14% less than that of the reference building, while the improved CLT design reaches about 22% costs savings.
Online Access
Free
Resource Link
Less detail

Evolution of the Building Envelope in Modern Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1799
Year of Publication
2017
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Keywords
Energy Efficiency
Building Envelope
Tall Wood
Wood Infill Walls
Podium Structures
Articulated Buildings
Language
English
Research Status
Complete
Summary
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
Online Access
Free
Resource Link
Less detail

High-Rise Wood Building Enclosures

https://research.thinkwood.com/en/permalink/catalogue2349
Year of Publication
2016
Topic
Moisture
Energy Performance
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Building Envelope

Improving Thermal Efficiency in Lightweight Construction: Mass Timber as Thermal Mass

https://research.thinkwood.com/en/permalink/catalogue1915
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Author
Dewsbury, Mark
Publisher
Forest & Wood Products Australia
Year of Publication
2016
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Topic
Energy Performance
Keywords
Thermal Efficiency
Lightweight
Low-Rise
Mid-Rise
Low-Energy
Language
English
Research Status
Complete
Series
Market Access, Project Number: PNA289-1213a
ISBN
978-1-925213-40-9
Online Access
Free
Resource Link
Less detail

Innovation in Hybrid Mass Timber High-Rise Construction: A Case Study of UBC’s Brock Commons Project

https://research.thinkwood.com/en/permalink/catalogue1273
Year of Publication
2017
Topic
General Information
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems

Investigating the Performance of the Construction Process of an 18-storey Mass Timber Hybrid Building

https://research.thinkwood.com/en/permalink/catalogue1269
Year of Publication
2017
Topic
General Information
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems

10 records – page 1 of 1.