Skip header and navigation

10 records – page 1 of 1.

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High-Rise Project

https://research.thinkwood.com/en/permalink/catalogue1710
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors

Apparent Sound Insulation in Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1276
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Md Shahnewaz
Thomas Tannert
Shahria Alam
Marjan Popovski
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Abstract
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane...
Online Access
Payment Required
Resource Link
Less detail

A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China

https://research.thinkwood.com/en/permalink/catalogue1207
Year of Publication
2017
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Haibo Guo
Ying Liu
Yiping Meng
Haoyu Huang
Cheng Sun
Yu Shao
Publisher
MDPI
Year of Publication
2017
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Energy Consumption
Carbon Emissions
Residential
Severe Cold Regions
Simulation
Reinforced Concrete
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Abstract
This paper aims to investigate the energy saving and carbon reduction performance of cross-laminated timber residential buildings in the severe cold region of China through a computational simulation approach. The authors selected Harbin as the simulation environment, designed reference residential...
Online Access
Free
Resource Link
Less detail

Description of Small and Large-Scale Cross Laminated Timber Fire Tests

https://research.thinkwood.com/en/permalink/catalogue1339
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Wood Building Systems

Energy Saving and Carbon Reduction in the Operation Stage of Cross Laminated Timber Residential Buildings in China

https://research.thinkwood.com/en/permalink/catalogue1208
Year of Publication
2017
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Haibo Guo
Ying Liu
Wen-Shao Chang
Yu Shao
Cheng Sun
Publisher
MDPI
Year of Publication
2017
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Energy Consumption
Carbon Emissions
Reinforced Concrete
China
Climate Zones
Simulation
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Abstract
This paper focused on energy consumption and carbon emission for heating and cooling during a building’s operation stage, and examined the energy effects of using Cross Laminated Timber (CLT) as an alternative building material to reinforced concrete (RC) in China’s 31 key cities located in different climate zones...
Online Access
Free
Resource Link
Less detail

Feasibility Study of Using Cross-Laminated Timber Core for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1262
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems

Modelling Prerequisites – FEM/SEA Impact and Airborne Sound

https://research.thinkwood.com/en/permalink/catalogue840
Year of Publication
2017
Topic
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Floors
Walls

Seismic Behavior of Cross-Laminated Timber Panel Buildings Equipped with Traditional and Innovative Connectors

https://research.thinkwood.com/en/permalink/catalogue1348
Year of Publication
2017
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Massimo Latour
Gianvittorio Rizzano
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Seismic Performance
XL-stub
Cyclic Loads
Fatigue Behavior
Finite Element Model
Dissipative Connectors
Language
English
Research Status
Complete
Series
Archives of Civil and Mechanical Engineering
Online Access
Payment Required
Resource Link
Less detail

10 records – page 1 of 1.