Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Apparent Sound Insulation in Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1276
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane...
Online Access
Payment Required
Resource Link
Less detail

A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China

https://research.thinkwood.com/en/permalink/catalogue1207
Year of Publication
2017
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Guo, Haibo
Liu, Ying
Meng, Yiping
Huang, Haoyu
Sun, Cheng
Shao, Yu
Publisher
MDPI
Year of Publication
2017
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Energy Consumption
Carbon Emissions
Residential
Severe Cold Regions
Simulation
Reinforced Concrete
Life-Cycle Assessment
Language
English
Research Status
Complete
Series
Sustainability
ISSN
2071-1050
Summary
This paper aims to investigate the energy saving and carbon reduction performance of cross-laminated timber residential buildings in the severe cold region of China through a computational simulation approach. The authors selected Harbin as the simulation environment, designed reference residential...
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber: Design and Performance

https://research.thinkwood.com/en/permalink/catalogue2271
Year of Publication
2017
Topic
Design and Systems
Fire
Acoustics and Vibration
Energy Performance
Environmental Impact
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Editor
Exova BM TRADA
Publisher
TRADA
Year of Publication
2017
Country of Publication
United Kingdom
Format
Book
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Acoustics and Vibration
Energy Performance
Environmental Impact
Mechanical Properties
Language
English
Research Status
Complete
ISBN
978-1909594630
Summary
This book has been written to cover the design and performance of CLT within construction. Chapter 1 showcases its uses for architects and building designers. Chapter 2 focuses on design principles and Chapter 3 covers CLT performance, including structural design, fire performance, acoustics, thermal performance, durability, appearance, and sustainability. Chapter 4 concludes the book with thirteen case studies based on several building types. Highly illustrated with photos and technical drawings, this book demonstrates the versatility of CLT as a sustainable, engineered timber solution and will assist architects, engineers and their clients looking to work with this material.
Online Access
Payment Required
Resource Link
Less detail

Description of Small and Large-Scale Cross Laminated Timber Fire Tests

https://research.thinkwood.com/en/permalink/catalogue1339
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Wood Building Systems

Design of a "Mass-Timber" Building with Different Seismic Bracing Technologies

https://research.thinkwood.com/en/permalink/catalogue1900
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Author
Fini, Giulio
Pozza, Luca
Loss, Cristiano
Tannert, Thomas
Publisher
ANIDIS Earthquake Engineering in Italy
Year of Publication
2017
Country of Publication
Italy
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Topic
Seismic
Keywords
Timber Frames
Prefabrication
Seismic Performance
Language
English
Conference
17th ANIDIS Conference
Research Status
Complete
Notes
September 17-21, 2017, Pistoia, Italy
ISBN
978-886741-8541
ISSN
2532-120X
Online Access
Free
Resource Link
Less detail

Developing a Design Procedure for Cross Laminated Timber Mats

https://research.thinkwood.com/en/permalink/catalogue2368
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Torra, Ines
Publisher
University of Illinois at Chicago
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Finite Element Analysis
Damage Models
Design Procedure
Language
English
Research Status
Complete
Summary
Cross-laminated Timber (CLT), a new generation of engineered wood product developed initially in Europe, is a relatively innovative building system of interest in the North American construction and is helping to define a new class of timber products known as massive or “mass” timber. This material has been gaining popularity in residential and non-residential applications in several countries due to many advantages it can offer: high dimension stability, high strength and stiffness, high level of prefabrication, fire resistant, cost and energy efficient, renewable and biodegradable, sustainable, and good thermal and sound insulator. However, CLT represents a complicated material whose behavior is difficult to predict in various applications and requires care from the engineers and researchers. Due to the increase of the use of CLT mats for industrial, construction and environmental applications, CLT mats are currently used in industrial applications, this study presents the analysis and behavior of such mats. Three-dimensional non-linear finite element models, using ANSYS, have been created, analyzed and compared with previous experimental work previously performed to validate the models. The model includes detailed modeling, analysis and investigation of the wood material supported by soil. This research shows a non-linear finite element analysis model that can predict CLT behavior. Damage models of CLT is used to determine the failure modes of this material. The analysis results are compared with current industrial practices published guides and highlight the limitations of such procedures. Lastly, a design procedure was developed for the analysis of different configurations such mats.
Online Access
Free
Resource Link
Less detail

Ductility of Large-scale Dowelled CLT Connections under Monotonic and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue2254
Year of Publication
2017
Topic
Connections
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Shear Walls

Enabling Prefabricated Timber Building Systems in Commercial Construction

https://research.thinkwood.com/en/permalink/catalogue1927
Year of Publication
2017
Topic
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Bylund, David
Organization
Centre for Sustainable Architecture in Wood
Publisher
Forest & Wood Products Australia
Year of Publication
2017
Country of Publication
Australia
Format
Report
Material
Glulam (Glue-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
Prefabrication
Commercial
NCC
Mid-Rise
Language
English
Research Status
Complete
ISBN
978-1-925213-58-4
Summary
This project identifies drivers for, and barriers to, the increased use of prefabricated timber building (PTB) systems in Class 2 to 9 commercial buildings, such as apartments, hotels, office buildings and schools. PTB systems in Australia are in a formative stage and yet to achieve broad acceptance in the marketplace as a conventional method of building. Opportunities for PTB systems can use timber’s well-established benefits such as high strength-to-weight ratio; design and construction flexibility; general environmental credentials including carbon sequestration; and prefabrication’s suitability for use on brown-field, restricted access and difficult sites and developments. In addition legislative constraints have now been largely removed (e.g. through changes to the 2016 National Construction Code). An increase in large scale mid-rise prefabricated buildings, and with the increasing nationalisation and internationalisation of the top tier building companies, suggests market acceptance will grow as PTB buildings are seen as ‘normal’.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.