Skip header and navigation

8 records – page 1 of 1.

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Effect of Realistic Boundary Conditions on the Behaviour of Cross-Laminated Timber Elements Subjected to Simulated Blast Loads

https://research.thinkwood.com/en/permalink/catalogue2361
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Cote, Dominic
Publisher
University of Ottawa
Year of Publication
2017
Country of Publication
Canada
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Seismic
Keywords
Connections
Seismic Load
Blast Loads
Fasteners
Language
English
Research Status
Complete
Summary
Cross-laminated timber (CLT) is an emerging engineered wood product in North America. Past research effort to establish the behaviour of CLT under extreme loading conditions has focussed CLT slabs with idealized simply-supported boundary conditions. Connections between the wall and the floor systems above and below are critical to fully describing the overall behaviour of CLT structures when subjected to blast loads. The current study investigates the effects of “realistic” boundary conditions on the behaviour of cross-laminated timber walls when subjected to simulated out-of-plane blast loads. The methodology followed in the current research consists of experimental and analytical components. The experimental component was conducted in the Blast Research Laboratory at the University of Ottawa, where shock waves were applied to the specimens. Configurations with seismic detailing were considered, in order to evaluate whether existing structures that have adequate capacities to resist high seismic loads would also be capable of resisting a blast load with reasonable damage. In addition, typical connections used in construction to resist gravity and lateral loads, as well as connections designed specifically to resist a given blast load were investigated. The results indicate that the detailing of the connections appears to significantly affect the behaviour of the CLT slab. Typical detailing for platform construction where long screws connect the floor slab to the wall in end grain performed poorly and experienced brittle failure through splitting in the perpendicular to grain direction in the CLT. Bearing type connections generally behaved well and yielding in the fasteners and/or angles brackets meant that a significant portion of the energy was dissipated there reducing the energy imparted on the CLT slab significantly. Hence less displacement and thereby damage was observed in the slab. The study also concluded that using simplified tools such as single-degree-of-freedom (SDOF) models together with current available material models for CLT is not sufficient to adequately describe the behaviour and estimate the damage. More testing and development of models with higher fidelity are required in order to develop robust tools for the design of CLT element subjected to blast loading.
Online Access
Free
Resource Link
Less detail

Feasibility Study of Tall Concrete-Timber Hybrid System

https://research.thinkwood.com/en/permalink/catalogue1274
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Application
Hybrid Building Systems

Feasibility Study of Using Cross-Laminated Timber Core for the UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1262
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems

Improving the Sound Absorption of Cross-Laminated Timber Panels Using Resonant Absorbent Layer

https://research.thinkwood.com/en/permalink/catalogue1265
Year of Publication
2017
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Rooms

Innovation in Hybrid Mass Timber High-Rise Construction: A Case Study of UBC’s Brock Commons Project

https://research.thinkwood.com/en/permalink/catalogue1273
Year of Publication
2017
Topic
General Information
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems

Investigating the Performance of the Construction Process of an 18-storey Mass Timber Hybrid Building

https://research.thinkwood.com/en/permalink/catalogue1269
Year of Publication
2017
Topic
General Information
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems

Seismic Design of Timber Steel Hybrid High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1270
Year of Publication
2017
Topic
Seismic
Connections
Application
Hybrid Building Systems

8 records – page 1 of 1.