Skip header and navigation

2 records – page 1 of 1.

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane...
Online Access
Payment Required
Resource Link
Less detail

Developing a Design Procedure for Cross Laminated Timber Mats

https://research.thinkwood.com/en/permalink/catalogue2368
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Torra, Ines
Publisher
University of Illinois at Chicago
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Finite Element Analysis
Damage Models
Design Procedure
Language
English
Research Status
Complete
Summary
Cross-laminated Timber (CLT), a new generation of engineered wood product developed initially in Europe, is a relatively innovative building system of interest in the North American construction and is helping to define a new class of timber products known as massive or “mass” timber. This material has been gaining popularity in residential and non-residential applications in several countries due to many advantages it can offer: high dimension stability, high strength and stiffness, high level of prefabrication, fire resistant, cost and energy efficient, renewable and biodegradable, sustainable, and good thermal and sound insulator. However, CLT represents a complicated material whose behavior is difficult to predict in various applications and requires care from the engineers and researchers. Due to the increase of the use of CLT mats for industrial, construction and environmental applications, CLT mats are currently used in industrial applications, this study presents the analysis and behavior of such mats. Three-dimensional non-linear finite element models, using ANSYS, have been created, analyzed and compared with previous experimental work previously performed to validate the models. The model includes detailed modeling, analysis and investigation of the wood material supported by soil. This research shows a non-linear finite element analysis model that can predict CLT behavior. Damage models of CLT is used to determine the failure modes of this material. The analysis results are compared with current industrial practices published guides and highlight the limitations of such procedures. Lastly, a design procedure was developed for the analysis of different configurations such mats.
Online Access
Free
Resource Link
Less detail