Skip header and navigation

10 records – page 1 of 1.

An Analytical Model for Design of Reinforcement around Holes in Laminated Veneer Lumber (LVL) Beams

https://research.thinkwood.com/en/permalink/catalogue135
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Ardalany, Manoochehr
Fragiacomo, Massimo
Moss, Peter
Deam, Bruce
Publisher
Springer Netherlands
Year of Publication
2013
Country of Publication
Netherlands
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Failure
Glued-In Rods
Model
Reinforcement
Screws
Tensile
Language
English
Research Status
Complete
Series
Materials and Structures
ISSN
1871-6873
Summary
Openings are usually required to allow services like plumbing, sewage pipes and electrical wiring to run through beams. This prevents an extra depth of the floor/ceiling, while preserving architectural considerations. The introduction of large opening causes additional tension perpendicular to grain in timber beams. The low tensile strength perpendicular to grain of wood allows crack formation. Crack propagation around the hole considerably decreases the load-carrying capacity of the beam. However, in most cases, crack formation and propagation around the hole can be prevented by the use of an appropriate reinforcement. Screw, glued-in rods, and plywood are alternative options for the reinforcement. Design of the reinforcement requires that the working mechanism of the reinforcement is fully understood and properly addressed. In addition, reinforcement should be designed for actions produced in the section of the beam weakened by the hole. The current paper uses a simple truss model around the opening to calculate the tensile force in the reinforcement. Two simple formulations for design of the reinforcement are derived and compared with numerical and experimental results, showing an overall good correspondence. The proposed truss model can be considered for incorporation in future codes of practice.
Online Access
Free
Resource Link
Less detail

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Bamboo Reinforced Glulam Beams: An Alternative to CFRP Reinforced Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue640
Year of Publication
2013
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Echavarria, Cesar
Echavarría, Beatriz
Cañola, Hernán
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Design and Systems
Keywords
Bamboo
CFRP
Load-Deformation
Reinforcement
Stiffness
Strength
Language
English
Research Status
Complete
Series
Advanced Materials Research
Summary
A research study was undertaken to investigate the mechanical performance of glulam beams reinforced by CFRP or bamboo. Local reinforcement is proposed in order to improve the flexural strength of glulam beams. The glulam beam is strengthened in tension...
Online Access
Free
Resource Link
Less detail

Bending Beams Made of Cross Laminated Timber with Load in Board Plane

https://research.thinkwood.com/en/permalink/catalogue1143
Year of Publication
2013
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams

Bending Tests on Glued Laminated Timber Beams with Well-Known Material Properties

https://research.thinkwood.com/en/permalink/catalogue186
Year of Publication
2013
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Fink, Gerhard
Kohler, Jochen
Frangi, Andrea
Organization
ETH Zurich
Year of Publication
2013
Country of Publication
Switzerland
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Bending Strength
Failure
Load Bearing Capacity
Four Point Bending Test
Density
Model
Bending Stiffness
Language
English
Research Status
Complete
Summary
At the Institute of Structural Engineering at the ETH Zurich numerous of investigations are conducted to analyse the load bearing capacity of glued laminated timber beams. The investigations are part of the research project ’Influence of varying material properties on the load bearing capacity of glued laminated timber (glulam)’. The investigations are taking place on 24 glulam beams with well-known material properties. The glulam beams are fabricated out of 400 timber boards. From those boards the material properties are investigated non-destructively within a former research project. During the glulam fabrication it is particularly focused to keep the information of the timber boards; i.e. after the glulam fabrication the position of each particular timber board within the glulam beam and thus the position of each particular knot is still known. The glulam beams are investigated during a 4-point bending test. On the glulam members the load bearing capacity, the bending stiffness and the density is measured. Furthermore local strains within the glulam beams are investigated using an optical coordinate-measurement device. Following the test the failure is investigated in detail. Hereby the type of failure (knot cluster, finger joint, clear wood) and the amount of failure (number of damaged lamellas) is documented. Afterwards the failed glulam beams are loaded again to analyse the remaining bending strength and the corresponding remaining bending stiffness. The major aim of the experimental analysis is the investigation of the load bearing capacity of glulam beams with well-known local material properties. The gained results can be used for an investigation of the influence of local weak zones, such as knot clusters or finger joints, on the load bearing capacity of glulam. In addition a data basis is produced to develop a new model (or to evaluate existing models) for the estimation of the load bearing capacity of glulam.
Online Access
Free
Resource Link
Less detail

A Case Study to Investigate the Life Cycle Carbon Emissions and Carbon Storage Capacity of a Cross Laminated Timber, Multi-Storey Residential Building

https://research.thinkwood.com/en/permalink/catalogue2139
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Darby, Howard
Elmualim, Abbas
Kelly, F.
Year of Publication
2013
Country of Publication
Germany
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Embodied Carbon
Life-Cycle Assessment
Multi-Storey
Multi-Family
Language
English
Conference
Sustainable Building Conference
Research Status
Complete
Notes
23-25 April 2013, Munich, Germany
Online Access
Free
Resource Link
Less detail

A Comparative Life Cycle Assessment of Two Multistory Residential Buildings: Cross-Laminated Timber Vs. Concrete Slab and Column with Light Gauge Steel Walls

https://research.thinkwood.com/en/permalink/catalogue339
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Grann, Blane
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Concrete
Life-Cycle Assessment
Mid-Rise
Steel
Canada
Language
English
Research Status
Complete
Summary
This study provides a comparative life cycle assessment (LCA) of a 4060 m2, 4-storey cross laminated timber (CLT) apartment building located in Quebec City, Canada and an equivalently designed building consisting of reinforced concrete slabs and columns with light gauge steel studded walls (CSSW). The emergence of CLT as a structural material that can be used in mid-rise building structures combined with limited work investigating the environmental performance of CLT in building applications provides the motivation for this comparative study.
Online Access
Free
Resource Link
Less detail

Comparison of Sustainability Performance for Cross Laminated Timber and Concrete

https://research.thinkwood.com/en/permalink/catalogue509
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Piacenza, Joseph
Tumer, Irem
Seyedmahmoudi, Seyedhamed
Haapala, Karl
Hoyle, Christopher
Publisher
ASME
Year of Publication
2013
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Social Impact
Sustainability
Reinforced Concrete
Economic Aspect
Manufacturing
Language
English
Conference
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
Research Status
Complete
Notes
August 4–7, 2013, Portland, Oregon, USA
Summary
As sustainable building design practices become more prevalent in today’s construction market, designers are looking to alternative materials for novel design strategies. This paper presents a case study comparing the sustainability performance of cross laminated timber (CLT) and reinforced concrete. A comparative sustainability assessment of cross laminated timber and concrete, considering economic, environmental, and social aspects was performed. Environmental impact is measured in terms of CO2 equivalent, economic impact is measured with total sector cost (including sector interdependencies), and qualitative metrics were considered for social impact. In order to conduct an accurate performance comparison, a functional unit of building facade volume was chosen for each product. For this paper, several end-of-life strategies were modeled for CLT and concrete facades. To understand environmental, economic, and social impact, three different scenarios were analyzed to compare performance of both CLT and concrete, including cradle to gate product manufacturing, manufacturing with landfill end-of-life, and manufacturing with recycling end-of-life. Environmental LCA was modeled using GaBi 5.0 Education Edition, which includes its own database for elements including materials, processes, and transportation. To compare the economic impact, Carnegie Mellon’s EIO-LCA online tool is used. Finally, social life cycle impact was considered by identifying process attributes of both products that affect the social domain. Based on this analysis, the use of CLT has a significantly lower environmental impact than concrete, however there are additional costs.
Online Access
Payment Required
Resource Link
Less detail

Comparison of Various Glulam in Physical Properties and Flexural Behaviors

https://research.thinkwood.com/en/permalink/catalogue642
Year of Publication
2013
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Qiu, Jing
Tong, Jianhong
Hui Chen, Li
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Douglas-Fir
Flexural Behavior
Physical Properties
Larch
Modulus of Rupture
Pine
Poplar
Language
English
Research Status
Complete
Series
Applied Mechanics and Materials
Summary
The glulam is determined by, and therefore a representation of, a new kind of ecological structural materials. The aim of this study was to summarize the mechanical performance especially the flexural behavior of various kinds of glulam and the physical...
Online Access
Free
Resource Link
Less detail

Coupled Timber–Concrete Ceiling Using Bonded Shear Connectors

https://research.thinkwood.com/en/permalink/catalogue886
Year of Publication
2013
Topic
Connections
Design and Systems
Material
Timber-Concrete Composite
Application
Ceilings
Author
Cajka, Radim
Burkovic, Kamil
Publisher
Scientific.net
Year of Publication
2013
Country of Publication
Switzerland
Format
Journal Article
Material
Timber-Concrete Composite
Application
Ceilings
Topic
Connections
Design and Systems
Keywords
Shear Connector
Language
English
Research Status
Complete
Series
Advanced Materials Research
Summary
This paper deals with the possibilities of using coupled timber-concrete structures by means a glued coupling bar. The described process of static reinforcement is particularly suitable for reconstruction of historic timber ceilings and places where it is necessary to prevent damage to non-supporting structures...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.