Skip header and navigation

14 records – page 1 of 2.

Design of a "Mass-Timber" Building with Different Seismic Bracing Technologies

https://research.thinkwood.com/en/permalink/catalogue1900
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Author
Fini, Giulio
Pozza, Luca
Loss, Cristiano
Tannert, Thomas
Publisher
ANIDIS Earthquake Engineering in Italy
Year of Publication
2017
Country of Publication
Italy
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Frames
Topic
Seismic
Keywords
Timber Frames
Prefabrication
Seismic Performance
Language
English
Conference
17th ANIDIS Conference
Research Status
Complete
Notes
September 17-21, 2017, Pistoia, Italy
ISBN
978-886741-8541
ISSN
2532-120X
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixeduse buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, fullscale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.
Online Access
Free
Resource Link
Less detail

Ductility of Large-scale Dowelled CLT Connections under Monotonic and Cyclic Loading

https://research.thinkwood.com/en/permalink/catalogue2254
Year of Publication
2017
Topic
Connections
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Shear Walls

Fire Resistance of Large-Scale Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2219
Year of Publication
2017
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Henek, Vladan
Venkrbec, Václav
Novotný, Miloslav
Publisher
IOP Publishing Ltd
Year of Publication
2017
Country of Publication
Czech Republic
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Fire
Mechanical Properties
Keywords
Fire Resistance
European Standards
Language
English
Conference
World Multidisciplinary Earth Sciences Symposium
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Framework - A Tall Re-Centering Mass Timber Building in the United States

https://research.thinkwood.com/en/permalink/catalogue713
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zimmerman, Reid
McDonnell, Eric
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
US
Mixed-Use Building
Tall Wood
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
Framework is a 12-story, 140ft (43m) tall mixed use building to be constructed almost entirely out of mass timber, including both the gravity and lateral forceresisting systems, in a region of high seismicity in the United States (Portland, Oregon). Utilizing performance-based seismic design and nonlinear response history analysis, the structure’s rocking/re-centering cross laminated timber walls were designed for enhanced, beyond-code-level seismic objectives. These enhanced objectives were targeted through more stringent criteria on deformation-controlled elements, design for replacement of energy dissipaters, limitations on residual drift, and a project-specific testing program completed at Oregon State University and Portland State University. The momentum behind construction of mass timber buildings in the United States provides an opportunity to promote resilient/low-damage design which is consistent with the sustainability goals of many of these projects. This also follows naturally from the inherent rocking/re-centering behavior of mass timber walls. Furthermore, extending rocking mass timber walls to taller buildings is feasible; however, it requires an additional level of thoughtful design, explicit analysis and testing, and careful detailing, including consideration of the effective shear modulus of CLT, wall shear amplification due to higher mode effects, deformation compatibility of gravity connections, and CLT diaphragms.
Online Access
Free
Resource Link
Less detail

Higher Mode Effects in Multi-Storey Timber Buildings with Varying Diaphragm Flexibility

https://research.thinkwood.com/en/permalink/catalogue1480
Year of Publication
2017
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Author
Moroder, Daniel
Sarti, Francesco
Pampanin, Stefano
Smith, Tobias
Buchanan, Andrew
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Frames
Walls
Topic
Seismic
Mechanical Properties
Keywords
Nonlinear Time History Analysis
Higher Mode Effects
Stiffness
Diaphragms
Inter-Story Drift
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With the increasing acceptance and popularity of multi-storey timber buildings up to 10 storeys and beyond, the influence of higher mode effects and diaphragm stiffness cannot be overlooked in design. Due to the lower stiffness of timber lateral load resisting systems compared with traditional construction materials, the effect of higher modes on the global dynamic behaviour can be more critical. The presence of flexible timber diaphragms creates additional vibration modes, which have the potential to interact with each other, increasing the seismic demand on the whole structure. This paper uses a parametric non-linear time-history analysis on a series of timber frame and wall structures with varying diaphragm flexibility to study their dynamic behaviour and to determine diaphragm forces. The analyses results showed that although higher mode effects play a significant role in the structural dynamic response, this increased demand can be successfully predicted with methods available in literature. The parametric analyses showed that the diaphragm flexibility did not significantly increase the shear and moment demand; however, stiff wall structures with flexible diaphragms experienced large inter-storey drifts measured at diaphragm midspan compared with the drift of the wall alone. As expected, the diaphragm forces observed from the time-history analyses were significantly higher than the forces derived from an equivalent static analysis, leading to a potentially unsafe design. The paper presents a simplified approach for evaluating these amplified peak inertial diaphragm forces.
Online Access
Free
Resource Link
Less detail

In-Plane Loaded CLT Beams – Tests and Analysis of Element Lay-Up

https://research.thinkwood.com/en/permalink/catalogue2234
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams

Moisture Uptake Testing for CLT Floor Panels in a Tall Wood Building in Vancouver

https://research.thinkwood.com/en/permalink/catalogue2343
Year of Publication
2017
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Lepage, Robert
Higgins, James
Finch, Graham
Year of Publication
2017
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Moisture
Keywords
Water Resistance
Coatings
Hygrothermal Models
Moisture Content
Sensors
Biodegradation
Funghi
Language
English
Conference
Canadian Conference on Building Science and Technology
Research Status
Complete
Summary
Cross laminated timber (CLT) and mass timber construction is a promising structural technology that harnesses the advantageous structural properties of wood combined with renewability and carbon sequestering capacities not readily found in other major structural materials. However, as an organic material, mass timber is susceptible to biodeterioration, and when considered in conjunction with increased use of engineered wood materials, particularly in more extreme environments and exposures, it requires careful assessments to ensure long-term performance. A promising approach towards reducing construction moisture in CLT and other mass timber assemblies is to protect the surfaces with a water-resistant coating. To assess this approach, a calibrated hygrothermal model was developed with small and large scale CLT samples, instrumented with moisture content sensors at different depths, and treated with different types of water resistant coatings exposed to the Vancouver climate. The models were further validated with additional moisture content sensors installed in a mock-up floor structure of an actual CLT building under construction. Biodeterioration studies assessing fungal colonization were undertaken using the modified VTT growth method and a Dose-Response model for decay potential. The research indicates that CLT and mass timber is susceptible to dangerously high moisture contents, particularly when exposed to liquid water in horizontal applications. However, a non-porous, vapour impermeable coating, when applied on dry CLT, appears to significantly reduce the moisture load and effectively eliminate the risk of biodeterioration. This work strongly suggests that future use of CLT consider applications of a protective water-resistant coating at the manufacturing plant to resist construction moisture. The fungal study also highlights the need for a limit state design for biodeterioration to countenance variance between predicted and observed conditions.
Online Access
Free
Resource Link
Less detail

Non-Destructive Assessment of Gluing in Cross-Laminated Timber Panels

https://research.thinkwood.com/en/permalink/catalogue2277
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Concu, Giovanna
Fragiacomo, Massimo
Trulli, Nicoletta
Valdès, Monica
Year of Publication
2017
Country of Publication
United Kingdom
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
NDT
Ultrasonic Testing
Language
English
Conference
International Conference on Sustainable Development and Planning
Research Status
Complete
Series
WIT Transactions on Ecology and the Environment
Online Access
Free
Resource Link
Less detail

Pres-Lam in the US: The Seismic Design of the Peavy Building at Oregon State University

https://research.thinkwood.com/en/permalink/catalogue1475
Year of Publication
2017
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Author
Sarti, Francesco
Smith, Tobias
Danzig, Ilana
Karsh, Eric
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Pres-Lam
Load Carrying Capacity
US
Codes
Nonlinear Time History Analysis
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
Pres-Lam is a post-tensioned rocking timber technology that has been developed over the last decade at the University of Canterbury. Pres-Lam overcomes a major challenge in timber construction, the development of a high strength moment connection, by tying mass timber elements together with high-strength steel post-tensioned tendons. In seismic areas, additional reinforcing can be added to the system increasing capacity as well as providing hysteretic damping. In 2010 Pres-Lam moved from laboratory testing to onsite implementation and has now been used in the construction of numerous building in New Zealand and around the world. This paper will present the lateral load design of the first Pres-Lam structure to be built in the United States: the Peavy Building at Oregon State University, Corvallis, Oregon. Peavy is a three-storey mass timber building within the College of Forestry. A glulam and CLT gravity structure support the timber-concrete-composite floor, which is made up of CLT panels spanning between glulam beams. The lateral load carrying capacity is provided in the two orthogonal directions by Pres-Lam walls fabricated from Cross Laminated Timber (CLT). The paper will present an overview of the design philosophy and the main motivations for the use of the Pres-Lam system, discuss the requirements for U.S. code compliance, and review the nonlinear time-history analysis of the Pres-Lam structure.
Online Access
Free
Resource Link
Less detail

14 records – page 1 of 2.