Skip header and navigation

36 records – page 1 of 4.

Acoustic Performance of Timber and Timber-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue684
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Schluessel, Marc
Shrestha, Rijun
Crews, Keith
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Keywords
New Zealand
Australia
Building Code of Australia
Sound Insulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of light-weight timber floors, a structural floor was designed and built in laminated veneer lumber (LVL). The floor was evaluated in a laboratory setting based on its behaviour and then modified with suspended ceilings and different floor toppings. Twenty-nine different floor compositions were tested. The bare floor could not reach the minimum requirement set by the Building Code of Australia (BCA) but with additional layers, a sufficient result of R'w+Ctr 53 dB and L’nT,w + CI 50 dB was reached. Doubling of the concrete mass added a marginal improvement. With concrete toppings and suspended ceiling it is possible to reach the goal in airborne and impact sound insulation. The best result was achieved by combining of additional mass and different construction layers.
Online Access
Free
Resource Link
Less detail

Ambient and Forced Vibration Testing and Finite Element Model Updating of a Full-Scale Posttensioned Laminated Veneer Lumber Building

https://research.thinkwood.com/en/permalink/catalogue1103
Year of Publication
2012
Topic
Seismic
Wind
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Author
Worth, Margaret
Omenzetter, Piotr
Morris, Hugh
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Wind
Acoustics and Vibration
Keywords
Post-Tensioned
Full Scale
In Situ
Finite Element Model
Dynamic Performance
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 13-15, 2012, Christchurch, New Zealand
Summary
The Nelson Marlborough Institute of Technology Arts and Media building was completed in 2011 and consists of three seismically separate complexes. This research focussed on the Arts building as it showcases the use of coupled post-tensioned timber shear walls. These are part of the innovative Expan system. Full-scale, in-situ dynamic testing of the novel building was combined with finite element modelling and updating to obtain an understanding of the structural dynamic performance within the linear range. Ambient testing was performed at three stages during construction and was combined with forced vibration testing for the final stage. This forms part of a larger instrumentation program developed to investigate the wind and seismic response and long term deformations of the building. A finite element model of the building was formulated and updated using experimental modal characteristics. It was shown that the addition of non-structural elements, such as cladding and the staircase, increased the natural frequency of the first mode and the second mode by 19% and 24%, respectively. The addition of the concrete floor topping as a structural diaphragm significantly increased the natural frequency of the first mode but not the second mode, with an increase of 123% and 18%, respectively. The elastic damping of the NMIT building at low-level vibrations was identified as being between 1.6% and 2.4%
Online Access
Free
Resource Link
Less detail

Ambient Vibration Testing and Modal Analysis of Multi-Storey Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue237
Year of Publication
2014
Topic
Acoustics and Vibration
Wind
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Reynolds, Thomas
Bolmsvik, Åsa
Vessby, Johan
Chang, Wen-Shao
Harris, Richard
Bawcombe, Jonathan
Bregulla, Julie
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Serviceability
Keywords
Modal Properties
Multi-Storey
Damping
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The ambient movement of three modern multi-storey timber buildings has been measured and used to determine modal properties. This information, obtained by a simple, unobtrusive series of tests, can give insights into the structural performance of these forms of building, as well as providing information for the design of future, taller timber buildings for dynamic loads. For two of the buildings, the natural frequency has been related to the lateral stiffness of the structure, and compared with that given by a simple calculation. In future tall timber buildings, a new design criterion is expected to become important: deflection and vibration serviceability under wind load. For multi-storey timber buildings there is currently no empirical basis to estimate damping for calculation of wind-induced vibration, and there is little information for stiffness under wind load. This study therefore presents a method to address those gaps in knowledge.
Online Access
Free
Resource Link
Less detail

Analysis on Structureborne Sound Transmission at Junctions of Solid Wood Double Walls with Continuous Floors

https://research.thinkwood.com/en/permalink/catalogue1869
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls

Assessment of Dynamic Characteristics of Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1786
Year of Publication
2016
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Hummel, Johannes
Seim, Werner
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Mechanical Properties
Seismic
Keywords
Natural Frequency
Multi-Storey
Force-Based Design
Stiffness
Deformation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5819-5828
Summary
This paper discusses the impact of the natural frequency of multi-storey timber structures, focusing on force-based seismic design. Simplified approaches to determine the frequency of light-frame and cross-laminated timber structures are investigated. How stiffness parameters for simple two-dimensional analysis models can be derived from the different contributions of deformation...
Online Access
Free
Resource Link
Less detail

Assessment of Timber Floor Vibration Performance: A Case Study in Italy

https://research.thinkwood.com/en/permalink/catalogue147
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Author
Casagrande, Daniele
Piazza, Maurizio
Franciosi, Alessandro
Pederzolli, Federico
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Keywords
Dynamic
Eurocode
ISO
Italy
Natural Frequency
Numerical analysis
Testing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibrations induced by people walking is one of the most important issue in timber floor design. Low natural frequency and low mass require a careful analysis in order to prevent significant annoyance and to guarantee an acceptable human comfort. This paper is concerned with the assessment of vibration performance of a timber-concrete composite timber floor and a cross laminated timber floor used in two timber buildings under construction in Trento (Italy). Different approaches suggested by Standards and literature were employed: analytical methods, numerical analyses and laboratory tests. About analytical methods the uniformed distributed load deflection criterion (ULD), the Eurocode 5 criterion and some criterions from literature were compared, whereas the Vibration Dose Value (VDV) method, as suggested by ISO 10137, was used for the numerical models and the laboratory tests. The numerical analyses were carried out by means of a finite element modelling. The load due to footfall was simulated by static and dynamic vertical forces. The laboratory tests were characterized by thirty walking tests for each floor. Impact testing with modal hammer was also undertaken in order to investigate the dynamic properties of the specimens. All results are compared and discussed.
Online Access
Free
Resource Link
Less detail

Building Higher with Light-Weight Timber Structures: The Effect of Wind Induced Vibrations

https://research.thinkwood.com/en/permalink/catalogue89
Year of Publication
2015
Topic
Acoustics and Vibration
Wind
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Bolmsvik, Åsa
Jarnerö, Kirsi
Olsson, Jörgen
Reynolds, Thomas
Organization
Inter-noise
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Mid-Rise
High-Rise
Vibration Properties
Language
English
Conference
Inter-noise 2015
Research Status
Complete
Notes
August 9-12, 2015, San Francisco, California, USA
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structure have been designed and built. Examples of such are the 8-storey building Limnologen in Växjö, Sweden, the 9- storey Stadthaus in London, UK and being constructed at the moment, the 14-storey building Treet in Bergen, Norway. These are all light-weight and flexible structures which raise questions regarding the wind induced vibrations. For the building in Norway, the calculated vibration properties of the top floor are on the limit of being acceptable according to the ISO 101371 vibration criteria for human comfort. This paper will give a review of building systems for medium-to-high-rise timber buildings. Measured vibration properties for some medium-to-high-rise timber buildings will also be presented. These data have been used for calculating the peak acceleration values for two example buildings for comparison with the ISO standards. An analysis of the acceleration levels for a building with double the height has also been performed showing that designing for wind induced vibrations in higher timber buildings is going to be very important and that more research into this area is needed.
Online Access
Free
Resource Link
Less detail

Calculation of Sound Insulation for Hybrid CLT Fabricated with Lumber and LVL and Comparison with Experimental Data

https://research.thinkwood.com/en/permalink/catalogue2216
Year of Publication
2019
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Author
Ju, Zehui
Zhang, Haiyang
Zhan, Tianyi
Hong, Lu
Lin, Yangfan
Lu, Xiaoning
Publisher
EDP Sciences
Year of Publication
2019
Country of Publication
France
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Language
English
Research Status
Complete
Series
MATEC Web of Conferences
Online Access
Free
Resource Link
Less detail

Design Method for Controlling Vibrations of Wood-Concrete Composite Floors Systems

https://research.thinkwood.com/en/permalink/catalogue1689
Year of Publication
2016
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Chui, Ying Hei
Ramzi, Redouane
Gagnon, Sylvain
Mohammad, Mohammad
Ni, Chun
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Keywords
Natural Frequencies
Deflection
Bending Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4237-4245
Summary
Wood-concrete composite slab floors provide a promising solution for achieving long spans and shallow wood-based floor systems for large and tall wood buildings. In comparison with conventional wood floor systems, such long span and heavy floors have a lower fundamental natural frequency, which challenges the floor vibration controlled design. A laboratory study, including subjective evaluation and measurement of the natural frequencies and one-kN static deflections, was conducted on wood-concrete composite floors. Method of calculation of the composite bending stiffness of the wood-concrete composite floor is proposed. The design criterion for human comfort was derived from the subjective evaluation results using the calculated fundamental natural frequency and 1 kN static deflection of one meter wide strip of the composite floor. The equation to directly determine the vibration controlled spans from the stiffness and mass was derived. Limited verification was performed. Further verification is needed when more field wood-concrete composite floors become available.
Online Access
Free
Resource Link
Less detail

Development of Southern Pine Cross-Laminated Timber for Building Code Acceptance

https://research.thinkwood.com/en/permalink/catalogue474
Year of Publication
2014
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Hindman, Daniel
Bouldin, John
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Acoustics and Vibration
Fire
Mechanical Properties
Market and Adoption
Keywords
Southern Pine
Fire Performance
Acoustical Performance
International Building Code
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The current interest and growth of cross laminated timber (CLT) products has spurred interest in the manufacture of CLTs in the United States. The purpose of this paper is to explore the development of CLT materials from southern pine lumber commonly available in Virginia. A 5-layer CLT panel has been constructed using No. 2 southern pine lumber. Evaluation of mechanical properties, fire performance and acoustical performance were conducted. Results of these evaluations can guide the development and acceptance of CLT products in the International Building Code.
Online Access
Free
Resource Link
Less detail

36 records – page 1 of 4.