Skip header and navigation

13 records – page 1 of 2.

Correct Temperature Measurements in Fire Exposed Wood

https://research.thinkwood.com/en/permalink/catalogue2025
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)

Design of Timber Members Subjected to Axial Compression or Combined Axial Compression and Bending Based on 2nd Order Theory

https://research.thinkwood.com/en/permalink/catalogue115
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Frangi, Andrea
Steiger, René
Theiler, Matthias
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Country of Publication
Germany
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Design and Systems
Mechanical Properties
Keywords
Bending
Buckling
Codes
Compression
Deformation
Monte Carlo
Simulation
Structural
Testing
Language
English
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Sibenik, Croatia
Summary
The paper examines the behaviour of structural timber members subjected to axial compression or combined axial compression and bending. Based on experimental and numerical investigations, the accuracy of the existing approach in Eurocode 5 for the design of timber members subjected to axial compression or combined axial compression and bending is assessed and modifications are suggested. By means of extensive experimental investigations, a data base was created for the validation of calculation models and for the assessment of design concepts. In order to assess the behaviour of timber members subjected to axial compression or combined axial compression and bending, strain-based calculation models were developed. The investigations indicate that the existing approach of Eurocode 5 based on 2nd order analysis can lead to an overestimation of the load-bearing capacity. Hence, a modified design approach was developed which agrees with the results of the Monte Carlo simulations very well and thus ensures a safe and economical design of timber members subjected to compression or combined compression and bending.
Online Access
Free
Resource Link
Less detail

Dowelled Timber Connections with Internal Members of Densified Veneer Wood and Fibre-Reinforced Polymer Dowels

https://research.thinkwood.com/en/permalink/catalogue1498
Year of Publication
2016
Topic
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)
Author
Palma, Pedro
Kobel, Peter
Minor, Alexander
Frangi, Andrea
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Connections
Keywords
Timber-to-Timber
Densified Veneer Wood
Fibre-Reinforced Polymer
Dowel Type Fastener
Embedment Tests
Bending Test
Shear Test
Full Scale
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 236-243
Summary
The mechanical behaviour of timber-to-timber connections with internal panels of densified veneer wood (DVW) and fibre-reinforced polymer (FRP) dowels was experimentally assessed and a design method, based on EN 1995-1-1, was developed. Embedment tests on DVW plates and bending/shear tests on FRP dowels were performed to characterise these components, followed by full-scale tests of connections assembled with these materials. The results show that these connections exhibit a mechanical behaviour compatible with structural applications, regarding both load-carrying capacity and ductility. The proposed design model is based on EN 1995-1-1’s expressions for connections with dowel-type fasteners and gives good predictions of the experimental load-carrying capacities.
Online Access
Free
Resource Link
Less detail

Field Testing on Innovative Timber Structures

https://research.thinkwood.com/en/permalink/catalogue671
Year of Publication
2014
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Frames
Author
Leyder, Claude
Wanninger, Flavio
Frangi, Andrea
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Floors
Frames
Topic
Design and Systems
Keywords
Beech
Post-Tensioned
Office Buildings
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
In timber research, a main objective is the development and promotion of innovative and efficient timber structures. Therefore a pilot building, named ETH House of Natural Resources, has been designed, which uses two innovative structural systems, a post-tensioned timber frame and a composite beech LVL concrete floor. The building will be used as an office building for the Laboratory of Hydraulics, Hydrology and Glaciology from ETH Zürich and will serve as a showcase building of a sustainable and reliable timber construction for students and researchers, among others.
Online Access
Free
Resource Link
Less detail

Fire Tests on Loaded Cross-Laminated Timber Wall and Floor Elements

https://research.thinkwood.com/en/permalink/catalogue254
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Author
Klippel, Michael
Leyder, Claude
Frangi, Andrea
Fontana, Mario
Publisher
International Association For Fire Safety Science
Year of Publication
2014
Country of Publication
Netherlands
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Topic
Fire
Keywords
Charring Rate
Canada
Panels
Fire Resistance
Language
English
Conference
Fire Safety Science International Symposium
Research Status
Complete
Notes
February 9-14, 2014, Christchurch, New Zealand
Summary
Cross-laminated timber (CLT) panels are relatively new engineered wood products that can be used as load bearing walls, floors and roof elements in innovative and high quality modern timber structures. The fire behavior of cross-laminated timber panels requires careful evaluation to allow the expansion of CLT elements usage in buildings. A University of British Columbia study has been conducted at the Trees and Timber Institute CNR-IVALSA in San Michele all’Adige, Italy to experimentally evaluate the fire performance of Canadian CLT panels. In total, ten loaded fire tests were performed using standard fire curves (ULC/ASTM and ISO) to study the influence of different cross-section layups on the fire resistance of floor and wall elements and to investigate the influence of different anchors on the fire behavior of wall elements. This paper presents the main results of the experimental analyses and discusses in particular the charring rate, one of the main parameters in fire design.
Online Access
Free
Resource Link
Less detail

Fire Tests on Timber-Concrete Composite Slabs Using Beech Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue1677
Year of Publication
2016
Topic
Fire
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Author
Klippel, Michael
Boccadoro, Lorenzo
Klingsch, Eike
Frangi, Andrea
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Topic
Fire
Keywords
Large Scale
Fire Resistance
Fire Test
Beech
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3942-3949
Summary
At the Institute of Structural Engineering (IBK) of ETH Zurich, the fire behaviour of timber-concrete composite slabs made with beech laminated veneer lumber (LVL) (BauBuche) was investigated. This composite slab is made of a thin plate (depth: 40 mm or 80 mm) using beech LVL and a concrete layer on top (depth: 160 mm or 120 mm). The beech plate acts both as formwork and as tensile reinforcement. This innovative slab system was implemented for the first time in the ETH House of Natural Resources at ETH Zurich. This paper summarizes the results of two largescale fire tests on loaded timber-concrete composite slabs exposed to standard ISO fire. Both fire tests show that the timber-concrete composite slab using beech LVL reaches sufficient fire resistance and integrity for 90 min and 60 min, respectively.
Online Access
Free
Resource Link
Less detail

Modal Vibration Testing of an Innovative Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1494
Year of Publication
2016
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Author
Leyder, Claude
Frangi, Andrea
Chatzi, Eleni
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Beech
Post-Tensioned
Modal Vibration Tests
Eigenfrequencies
Damping Ratios
Mode Shapes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 177-185
Summary
This research paper deals with the evaluation of the dynamic modal vibration tests conducted on an innovative timber structure, the ETH House of Natural Resources. The building serves as a demonstrator of several innovative structural systems and technologies relating to timber. The main load-bearing structure comprises a posttensioned timber frame, which was subjected to modal vibration tests, firstly in the laboratory and, subsequently on the construction site. In this paper, the modal characteristics (eigenfrequencies, damping ratios and mode shapes), obtained from the laboratory testing campaign are presented. The modal vibration data is evaluated using polynomial and subspace identification techniques. The obtained results reveal that the structure exhibits pure translational, beam and column modes, as well as mixed beam-column modes. The bottom connection of the columns delivers significant influence on the modal characteristics, whereas the level of post-tensioning force yields no substantial influence in the modal characteristics obtained from low amplitude modal vibration tests.
Online Access
Free
Resource Link
Less detail

Needs for Total Fire Engineering of Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1674
Year of Publication
2016
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bartlett, Alastair
Wiesner, Felix
Hadden, Rory
Bisby, Luke
Lane, Barbara
Lawrence, Andrew
Palma, Pedro
Frangi, Andrea
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Fire Safety
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3888-3897
Summary
Fire safety is widely perceived as a barrier to implementation of tall timber buildings, particularly for engineered mass timber buildings with significant areas of exposed timber and timber structural framing. This negative perception is exacerbated by a lack of scientific data or experimental evidence on a range of potentially important issues that must be properly understood to undertake rational, performance-based engineering design of such structures. With the goal of delivering fully engineered structural fire designs, this paper presents and discusses a framework for using scientific knowledge, along with fire engineering tools and methods, to enable the design of timber buildings such that, when subject to real fire loads, their performance is quantified. The steps in this framework are discussed with reference to the available literature, in an effort to highlight areas where additional knowledge and tools are needed.
Online Access
Free
Resource Link
Less detail

Post-Tensioned Timber Connections, Experimental Analysis of the Long Term Behavior

https://research.thinkwood.com/en/permalink/catalogue527
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Wanninger, Flavio
Frangi, Andrea
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Climate
Post-Tensioning
Relative Humidity
Temperature
Long-term Behaviour
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
To estimate the loss of tendon force for a post-tensioned timber connection a series of tests are being conducted at the ETH in Zurich. Several post-tensioned specimens are being observed in different climate conditions. One set of specimens is in a climate chamber, where the relative humidity and temperature are kept constant. The second set of test specimens is positioned in an uncontrolled environment, where temperature and relative humidity change daily. The two environments allow estimating the influence of changes in relative humidity and temperature on the loss rate of tendon force. First results show that the relative humidity influences this rate, making it a key variable to estimate the total loss in post-tensioning force during the lifetime of a building.
Online Access
Free
Resource Link
Less detail

Remaining Load-Bearing Behaviour of Glued Laminated Timber Beams - Potential in Respect to Structural Robustness

https://research.thinkwood.com/en/permalink/catalogue494
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Fink, Gerhard
Frangi, Andrea
Kohler, Jochen
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Load Bearing Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
In the paper presented here the remaining load bearing capacity and the associated deformation of GLT beams is investigated and its potential in respect to robustness is discussed.
Online Access
Free
Resource Link
Less detail

13 records – page 1 of 2.