Skip header and navigation

64 records – page 1 of 7.

Analysis on Structureborne Sound Transmission at Junctions of Solid Wood Double Walls with Continuous Floors

https://research.thinkwood.com/en/permalink/catalogue1869
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls

Assessing the Seismic Performance of Screws Used in Timber Structures by Means of Cyclic Bending Tests

https://research.thinkwood.com/en/permalink/catalogue1946
Year of Publication
2018
Topic
Connections
Seismic
Application
Walls
Floors

Behaviour of Mechanically Laminated CLT Members

https://research.thinkwood.com/en/permalink/catalogue291
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kuklík, Petr
Velebil, Lukáš
Publisher
IOP Publishing Ltd
Year of Publication
2015
Country of Publication
Latvia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Connections
Mechanical Properties
Keywords
Shear Stress
Torsional Stiffness
Slip Modulus
Lamination
Language
English
Conference
International Conference on Innovative Materials, Structures and Technologies
Research Status
Complete
Notes
September 30-October 2 2015, Riga, Latvia
Summary
Cross laminated timber (CLT) is one of the structural building systems based on the lamination of multiple layers, where each layer is oriented perpendicularly to each other. Recent requirements are placed to develop an alternative process based on the mechanical lamination of the layers, which is of particular interest to our research group at the University Centre for Energy Efficient Buildings. The goal is to develop and verify the behaviour of mechanically laminated CLT wall panels exposed to shear stresses in the plane. The shear resistance of mechanically jointed CLT is ensured by connecting the layers by screws. The paper deals with the experimental analysis focused on the determination of the torsional stiffness and the slip modulus of crossing areas for different numbers of orthogonally connected layers. The results of the experiments were compared with the current analytical model.
Online Access
Free
Resource Link
Less detail

Buckling of Cross Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue1615
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Perret, Olivier
Douthe, Cyril
Lebée, Arthur
Sab, Karam
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Linear Buckling
Finite Element
Buckling Loads
Boundary Conditions
Bending-Gradient theory
Transverse Shear Effects
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2360-2367
Summary
In this paper, the linear buckling of Cross Laminated Timber walls is investigated. A 3D numerical study using finite-elements is presented for several Cross Laminated Timber geometries, ply configurations and boundary conditions. First, it is shown that critical buckling loads are close to the material failure load which proves the necessity of a design model for the buckling of Cross Laminated Timber panels. Second, through a comparison between soft simple support boundary conditions and conventional hard simple support conditions, it is shown that this distinction could be taken into account for designing timber structures depending on the accuracy needed. Third, several plate models, particularly the Bending-Gradient theory, are compared to these 3D reference results. It is observed that for varying plate geometries and arrangements, the Bending-Gradient theory predicts more precisely the critical load of CLT panels than classical lamination and first-order shear deformation theories. Finally, it is demonstrated that one of the suggested projections of the Bending-Gradient on a Reissner-Mindlin model gives very accurate results and could favorably allow the development of engineering recommendations to estimate properly transverse shear effects.
Online Access
Free
Resource Link
Less detail

Compressive Strength of Cross-Laminated Timber Panel

https://research.thinkwood.com/en/permalink/catalogue280
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Oh, Jung-Kwon
Hong, Jung-Pyo
Lee, Junjae
Year of Publication
2014
Country of Publication
Slovakia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Keywords
Compression Strength
Mid-Rise
Vertical Bearing Load
Monte Carlo
Language
English
Conference
International Convention of Society of Wood Science and Technology
Research Status
Complete
Notes
June 23-27, 2014, Zvolen, Slovakia, p.761-768
Summary
The mission of the Hardwood Scanning Center at Purdue University is to increase the global competitiveness of the United States hardwood industry and to conserve the hardwood resource by development of manufacturing technologies which will enable hardwood industry to “see inside a tree” and use this information to make better processing decisions. The Hardwood Scanning Center partnered with Microtek, GmbH of Italy in the development of an industrial grade log CT scanner. World’s first three industrial CT log scanners have been installed in last 12 months in mills around the world and we will briefly discuss their application. The Hardwood Scanning Center also developed visualization and optimization software for the hardwood veneer and sawmill operations. This presentation will provide an overview of state-of-the-art in CT scanning of logs.
Online Access
Free
Resource Link
Less detail

Controlled Rocking Cross-Laminated Timber Walls for Regions of Low-to-Moderate Seismicity

https://research.thinkwood.com/en/permalink/catalogue1726
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Kovacs, Mike
Wiebe, Lydell
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
North America
Canada
Nonlinear Time History Analysis
Prototype
Controlled Rocking Heavy Timber Walls
Drifts
Energy Dissipation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4671-4680
Summary
Controlled rocking heavy timber walls (CRHTW) were originally developed in New Zealand as a low-damage seismic force resisting system using Laminated Veneer Lumber (LVL). This paper examines one way of adapting them to regions of low-to-moderate seismicity in North America, using Cross-Laminated Timber (CLT) composed of...
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Rocking Wall with Replaceable Fuses: Validation through Full-Scale Shake Table Testing

https://research.thinkwood.com/en/permalink/catalogue2027
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls

Deflection of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1974
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Design and Testing of Post-Tensioned Timber Wall Systems

https://research.thinkwood.com/en/permalink/catalogue696
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Walls
Author
Sarti, Francesco
Palermo, Alessandro
Pampanin, Stefano
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Multi-Storey
Pres-Lam
Energy Dissipation
Quasi-Static Test
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The paper presents the design and detailing, and the experimental quasi-static 2/3 scale tests of two posttensioned wall systems: a single (more traditional) wall system (Figure 2) and a new configuration comprising of a column-wall-column coupled system (Figure 3). The latter allows avoiding displacement incompatibilities issues between the wall and the diaphragm by using the boundary columns as supports.
Online Access
Free
Resource Link
Less detail

Developing Seismic Performance Factors for Cross Laminated Timber in the United States

https://research.thinkwood.com/en/permalink/catalogue124
Year of Publication
2015
Topic
Seismic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
van de Lindt, John
Amini, M. Omar
Rammer, Douglas
Line, Philip
Pei, Shiling
Popovski, Marjan
Organization
Canadian Association for Earthquake Engineering
Year of Publication
2015
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Mechanical Properties
Connections
Keywords
Angle Bracket
Shear Test
Strength
Stiffness
Uplift Test
US
Language
English
Conference
The 11th Canadian Conference on Earthquake Engineering
Research Status
Complete
Notes
July 21-24, 2015, Victoria, BC, Canada
Summary
This paper presents recent progress in the development of seismic performance factors for cross-laminated timber (CLT) systems in the United States. A brief overview of some of other systematic studies conducted in Europe, North America, and Japan is also provided. The FEMA P695 methodology is briefly described and selected results from connector testing and CLT wall testing are discussed. Shear and uplift tests were performed on generic angle brackets to quantify their behavior. CLT walls with these connectors were then tested investigate the influence of various parameters on wall component performance. The influential factors considered include boundary condition, gravity loading, CLT grade, panel thickness, and panel aspect ratio (height:length). Results indicate that boundary condition and gravity loading have beneficial effect on strength and stiffness of the CLT panels. CLT grade is an important parameter while CLT panel thickness only has a minimal influence on wall behavior. Higher aspect ratio (4:1) panels demonstrated less stiffness but considerably more ductility than the panels with lower aspect ratio (2:1). This paper also provides details on some ongoing efforts including additional tests planned, index buildings from which P-695 archetypes will be extracted, and nonlinear modeling for this project.
Online Access
Free
Resource Link
Less detail

64 records – page 1 of 7.