Skip header and navigation

22 records – page 1 of 3.

Adhesive Bonding of Timber and Glass in Load-Bearing Facades - Evaluation of the Ageing Behaviour

https://research.thinkwood.com/en/permalink/catalogue1742
Year of Publication
2016
Topic
Connections
Serviceability
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Author
Nicklisch, Felix
Weller, Bernhard
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Topic
Connections
Serviceability
Keywords
Adhesives
Façade
Load Bearing
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4913-4920
Summary
Wooden constructions are on the rise again – encouraged by a strong trend towards sustainable and resource efficient buildings. Load-bearing timber-glass composite elements – a novel concept to use the in-plane loadbearing potential of glass – could contribute to a more efficient use of materials in façades. The current study relates to...
Online Access
Free
Resource Link
Less detail

Comparison of the Seismic Performance of Different Hybrid Timber-Steel Frame Configurations

https://research.thinkwood.com/en/permalink/catalogue1775
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Hybrid Building Systems
Shear Walls
Author
Marin, Jose Alberto
He, Minjuan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Application
Hybrid Building Systems
Shear Walls
Topic
Seismic
Design and Systems
Keywords
Finite Element Model
Timber-Steel Hybrid
Deformation
Lateral Loading
Abaqus
Displacement
Inter-Story Drift
Diaphragm
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5401-5408
Summary
This paper presents a finite element modeling case study of three different designs of hybrid timber-steel 6-story buildings. One of the buildings is composed by steel frames and timber diaphragms while the other two cases consist of the initial design with timber shear walls added in different dispositions, one with outer walls and the other...
Online Access
Free
Resource Link
Less detail

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
Online Access
Free
Resource Link
Less detail

Development of Steel-Wood Hybrid Systems for Buildings Under Dynamic Loads

https://research.thinkwood.com/en/permalink/catalogue845
Year of Publication
2012
Topic
Seismic
Design and Systems
Serviceability
Application
Hybrid Building Systems
Author
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
Chile
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Serviceability
Keywords
Dynamic Loads
Timber-Steel Hybrid
Strength
Language
English
Conference
International Specialty Conference on Behaviour of Steel Structures in Seismic Areas
Research Status
Complete
Notes
January 9-11, 2012, Santiago, Chile
Summary
A steel-wood hybrid system furnishes not only aesthetically pleasing and sustainable hybrid structures but is superior in seismic applications due to the light weight, high resistance, and adjustable ductility. Such hybrid structural systems are not covered by any material and structural design standards that hinder the general implementation. For light structures, a builder’s guide to hybrid wood and steel connection details already exists in North America. Despite the obvious advantages, however, today’s applications of steel-wood hybrid structures have been limited. Rare hybrid buildings with a concentrically braced frame used for lateral load resistance with a glulam timber floor slab have been built as prototypes. The use of glulam floor slab led to a substantially reduced self-weight, compared with the reinforced concrete slab option. The lighter structure behaves superior in seismic events and has made wind loads the governing design case. The next generation steel-wood hybrid structures should optimally utilize each material. This paper describes a research program of the next generation wood-steel hybrid structures should optimally utilize each material. In detail the following development issues will be addressed: innovative hybrid steel-wood building systems, technical tools to predict structural responses of hybrid systems, design principles underpinning the definition of key code provisions related to strength and serviceability performance of hybrid buildings. It will be highlighted that potential structural problems at the design stage result from material incompatibilities. The constitutive properties of each material, hybrid-material, and joint properties reported in the literature will be used, or supplemented by findings from experimental work.
Online Access
Free
Resource Link
Less detail

Does Timber-Concrete Floor System Save Energy?

https://research.thinkwood.com/en/permalink/catalogue2042
Year of Publication
2018
Topic
Energy Performance
Material
Timber-Concrete Composite
Application
Floors
Hybrid Building Systems
Author
Liu, Ying
Chang, Wen-Shao
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Hybrid Building Systems
Topic
Energy Performance
Keywords
Thermal Mass
Simulation
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Geometrical Aspects for the Design of Prefabricated Load-Bearing Timber-Glass-Facades

https://research.thinkwood.com/en/permalink/catalogue1746
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Author
Pascha, Khaled Saleh
Pascha, Vitalija
Winter, Wolfgang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Glass Composite
Application
Hybrid Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Façade
Prefabricated
Load-Bearing Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4947-4955
Summary
The considerable increase in the architectural demands for highly transparent and load-bearing structures have recently resulted in the development of an innovative hybrid structure. This article provides a review of design parameters for Timber-Glass composite facades. The design/architectural question, which arose in the project, was how...
Online Access
Free
Resource Link
Less detail

High-Capacity Hold-Down for Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1529
Year of Publication
2016
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Zhang, Xiaoyue
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Holz-Stahl-Komposit
Hold-Down
Seismic Load
Strength
Stiffness
Ductility
Failure Mechanisms
Quasi-Static
Monotonic Loading
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 725-732
Summary
The structural use of wood in North America is dominated by light wood-frame construction used in low-rise and – more recently – mid-rise residential buildings. Mass timber engineered wood products such as laminatedveneer-lumber and cross-laminated timber (CLT) panels enable to use the material in tall and large wood and woodbased hybrid buildings. The prospect of constructing taller buildings creates challenges, one of them being the increasein lateral forces created by winds and earthquakes, thus requiring stronger hold-down devices. This paper summarises the experimental investigation on the performance a high-capacity hold-down for resisting seismic loads in tall timberbased structural systems. The connection consists of the Holz-Stahl-Komposit-System (HSK)™ glued into CLT with the modification that ductile steel yielding was allowed to occur inside the CLT panel. The strength, stiffness, ductility and failure mechanisms of this connection were evaluated under quasi-static monotonic and reversed cyclic loading. The results demonstrate that the modified hold-down-assembly provides a possible solution for use in tall timber-based structures in high seismic zones
Online Access
Free
Resource Link
Less detail

Highly Energy Dissipative and Ductile Timber-Glass Hybrid Element

https://research.thinkwood.com/en/permalink/catalogue1744
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Timber-Glass Composite
Application
Hybrid Building Systems
Author
Rajcic, Vlatka
Žarnic, Roko
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Timber-Glass Composite
Application
Hybrid Building Systems
Topic
Mechanical Properties
Seismic
Keywords
Glued-In Rods
Ductility
Energy Dissipation
Vertical Loads
Cyclic Loads
Horizontal Loads
Racking Test
Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4930-4937
Summary
CLT frames infilled with load-bearing glass sheets represent an innovative, hybrid structural element that can serve as load-bearing panel carrying load in both vertical and lateral direction. It can be used as a part of the prefabricated timber house or as a strengthening structural element in an existing timber building or the supporting...
Online Access
Free
Resource Link
Less detail

Interlocking Shear Wall Connections

https://research.thinkwood.com/en/permalink/catalogue2076
Year of Publication
2018
Topic
Connections
Mechanical Properties
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems

Modal Vibration Testing of an Innovative Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1494
Year of Publication
2016
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Author
Leyder, Claude
Frangi, Andrea
Chatzi, Eleni
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Beech
Post-Tensioned
Modal Vibration Tests
Eigenfrequencies
Damping Ratios
Mode Shapes
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 177-185
Summary
This research paper deals with the evaluation of the dynamic modal vibration tests conducted on an innovative timber structure, the ETH House of Natural Resources. The building serves as a demonstrator of several innovative structural systems and technologies relating to timber. The main load-bearing structure comprises a posttensioned timber frame, which was subjected to modal vibration tests, firstly in the laboratory and, subsequently on the construction site. In this paper, the modal characteristics (eigenfrequencies, damping ratios and mode shapes), obtained from the laboratory testing campaign are presented. The modal vibration data is evaluated using polynomial and subspace identification techniques. The obtained results reveal that the structure exhibits pure translational, beam and column modes, as well as mixed beam-column modes. The bottom connection of the columns delivers significant influence on the modal characteristics, whereas the level of post-tensioning force yields no substantial influence in the modal characteristics obtained from low amplitude modal vibration tests.
Online Access
Free
Resource Link
Less detail

22 records – page 1 of 3.