Skip header and navigation

Refine Results By

10 records – page 1 of 1.

100-Year Performance of Timber-Concrete Composite Bridges in the United States

https://research.thinkwood.com/en/permalink/catalogue2561
Year of Publication
2020
Topic
Serviceability
Application
Bridges and Spans
Author
Wacker, James
Dias, Alfredo
Hosteng, Travis
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Application
Bridges and Spans
Topic
Serviceability
Keywords
Concrete
Composite
Superstructure
Performance
Inspection
Language
English
Research Status
Complete
Series
Journal of Bridge Engineering
Summary
The use of timber–concrete composite (TCC) bridges in the United States dates back to approximately 1924 when the first bridge was constructed. Since then a large number of bridges have been built, of which more than 1,400 remain in service. The oldest bridges still in service are now more than 84 years old and predominately consist of two different TCC systems. The first system is a slab-type system that includes a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system is a stringer system that includes either sawn timber or glulam stringers supporting a concrete deck top layer. The records indicate that most of the TCC highway bridges were constructed during the period of 1930–1960. The study presented in this paper discusses the experience and per-formance of these bridge systems in the US. The analysis is based on a review of the relevant literature and databases complemented with field inspections conducted within various research projects. Along with this review, a historical overview of the codes and guidelines available for the design of TCC bridges in the US is also included. The analysis undertaken showed that TCC bridges are an effective and durable design alternative for highway bridges once they have shown a high performance level, in some situations after more than 80 years in service with a low maintenance level.
Online Access
Free
Resource Link
Less detail

Accommodating Movement in High-Rise Wood-Frame Building Construction

https://research.thinkwood.com/en/permalink/catalogue1875
Year of Publication
2011
Topic
Design and Systems
Connections
Material
Steel-Timber Composite
Other Materials
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
General Application
Floors
Walls

Acoustic Characteristics of Cross-Laminated Timber Systems

https://research.thinkwood.com/en/permalink/catalogue2618
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Di Bella, Antonino
Mitrovic, Milica
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Wooden Building Technology
Building Acoustics
Noise Control
Flanking Transmission
Energy Efficiency
Sustainability
Language
English
Research Status
Complete
Series
Sustainability
Summary
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
Online Access
Free
Resource Link
Less detail

Acoustic Emission of Bolt-Bearing Testing on Structural Composite Lumbers

https://research.thinkwood.com/en/permalink/catalogue1443
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
Application
General Application
Author
Du, Yicheng
Zhang, Jilei
Shi, Sheldon
Publisher
Society of Wood Science and Technology
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
Application
General Application
Topic
Acoustics and Vibration
Keywords
Acoustic Emission
Bolted Connection
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
Acoustic emission (AE) characteristics of full-hole bolt-bearing testing on structural composite lumbers (SCL) including laminated veneer lumber (LVL) and oriented strand lumber (OSL) were investigated. The main conclusion is that AE cumulative...
Online Access
Free
Resource Link
Less detail

Acoustic Impact Testing and Waveform Analysis for Damage Detection in Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue771
Year of Publication
2017
Topic
Acoustics and Vibration
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
General Application

Adoption of Unconventional Approaches in Construction: The Case of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1358
Year of Publication
2016
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Jones, Kell
Stegemann, Julia
Sykes, Judith
Winslow, Peter
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
United Kingdom
Construction
Language
English
Research Status
Complete
Series
Construction and Building Materials
Online Access
Free
Resource Link
Less detail

Ambient Vibration Measurement Data of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2211
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Mugabo, Ignace
Barbosa, André
Riggio, Mariapaola
Batti, James
Publisher
Frontiers Media
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Albina Yard
Ambient Vibration Testing
Operational Modal Analysis
Language
English
Research Status
Complete
Series
Frontiers in Built Environment
ISSN
2297-3362
Online Access
Free
Resource Link
Less detail

Ambient Vibration Tests of a Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue313
Year of Publication
2015
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Reynolds, Thomas
Harris, Richard
Chang, Wen-Shao
Bregulla, Julie
Bawcombe, Jonathan
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Wind
Keywords
Damping
Dynamic Movement
In Situ
Multi-Storey
Stiffness
Modal Properties
Ambient Vibration Method
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-6518
Online Access
Free
Resource Link
Less detail

An Accurate One-Dimensional Theory for the Dynamics of Laminated Composite Curved Beams

https://research.thinkwood.com/en/permalink/catalogue889
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

The Analysis of Bending Stiffness and Strength of Glue Laminated Nigerian Timber

https://research.thinkwood.com/en/permalink/catalogue2579
Year of Publication
2020
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Okafor, Kingsley
Ezeagu, Celestine
Publisher
Europa Publishing
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Flexural Strength
Polyurethane
PUR
Adhesive
Timber
Language
English
Research Status
Complete
Series
European Journal of Engineering Research & Science
Summary
An analysis into the flexural strength of solid and laminated timber specimens under working conditions was conducted. Five hardwoods and five softwoods were investigated, namely: Mansonia, Mahogany, Orji, Ukpi, Ufi mmanu, White Afara, Owen, Melina, Akpu and Ubia. The dimensions of the wood specimens are 100mm×50mm×20mm. The wood samples were tested for flexural strength using a Universal Testing Tensile Machine. The results obtained shows that Owen has the highest ultimate wood strength of 46.806N/mm² for the softwood glulam. Ukpi has the highest wood strength of 73.375N/mm² for the hardwood glulam, and highest MOE at 2412.93N/mm². Akpu recorded the weakest sample with bending strength values for glulam at 11.929 N/mm². Comparisons of strength were made to their respective solid timbers. Failure modes were analyzed. The study therefore demonstrates that the timber species used can be engineered to load bearing glulam structural elements using polyurethane adhesive glue without severe loss of strength.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.