Skip header and navigation

Refine Results By

555 records – page 1 of 56.

100-Year Performance of Timber-Concrete Composite Bridges in the United States

https://research.thinkwood.com/en/permalink/catalogue2561
Year of Publication
2020
Topic
Serviceability
Application
Bridges and Spans
Author
Wacker, James
Dias, Alfredo
Hosteng, Travis
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Application
Bridges and Spans
Topic
Serviceability
Keywords
Concrete
Composite
Superstructure
Performance
Inspection
Language
English
Research Status
Complete
Series
Journal of Bridge Engineering
Summary
The use of timber–concrete composite (TCC) bridges in the United States dates back to approximately 1924 when the first bridge was constructed. Since then a large number of bridges have been built, of which more than 1,400 remain in service. The oldest bridges still in service are now more than 84 years old and predominately consist of two different TCC systems. The first system is a slab-type system that includes a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system is a stringer system that includes either sawn timber or glulam stringers supporting a concrete deck top layer. The records indicate that most of the TCC highway bridges were constructed during the period of 1930–1960. The study presented in this paper discusses the experience and per-formance of these bridge systems in the US. The analysis is based on a review of the relevant literature and databases complemented with field inspections conducted within various research projects. Along with this review, a historical overview of the codes and guidelines available for the design of TCC bridges in the US is also included. The analysis undertaken showed that TCC bridges are an effective and durable design alternative for highway bridges once they have shown a high performance level, in some situations after more than 80 years in service with a low maintenance level.
Online Access
Free
Resource Link
Less detail

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Language
English
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Online Access
Free
Resource Link
Less detail

Accommodating Movement in High-Rise Wood-Frame Building Construction

https://research.thinkwood.com/en/permalink/catalogue1875
Year of Publication
2011
Topic
Design and Systems
Connections
Material
Steel-Timber Composite
Other Materials
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Floors
Walls

Acoustic Characteristics of Cross-Laminated Timber Systems

https://research.thinkwood.com/en/permalink/catalogue2618
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Di Bella, Antonino
Mitrovic, Milica
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Wooden Building Technology
Building Acoustics
Noise Control
Flanking Transmission
Energy Efficiency
Sustainability
Language
English
Research Status
Complete
Series
Sustainability
Summary
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
Online Access
Free
Resource Link
Less detail

Acoustic Emission of Bolt-Bearing Testing on Structural Composite Lumbers

https://research.thinkwood.com/en/permalink/catalogue1443
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
Author
Du, Yicheng
Zhang, Jilei
Shi, Sheldon
Publisher
Society of Wood Science and Technology
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
Topic
Acoustics and Vibration
Keywords
Acoustic Emission
Bolted Connection
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
Acoustic emission (AE) characteristics of full-hole bolt-bearing testing on structural compositelumbers (SCL) including laminated veneer lumber (LVL) and oriented strand lumber (OSL) were investigated. The main conclusion is that AE cumulative counts vs time curves of the tested SCL in this study can be characterized with three distinct regions in terms of AE count rates: Region I with a lower constant count rate, Region II with varied and increased count rates, and Region III with a higher constant count rate. Differences in AE count rates of these three regions occurred between LVL and OSL. Also, within each tested SCL, differences in AE count rates were observed among the three regions. These differences in terms of AE count rates between two tested SCL indicate that different types of wood-based composites might have different AE characteristics in terms of the count rate changes when they are subjected to increased bolt compression load. In other words, these differences in AE characteristics between the two tested materials suggest AE “signatures” do exist for SCL bolt connections.
Online Access
Free
Resource Link
Less detail

Acoustic Impact Testing and Waveform Analysis for Damage Detection in Glued Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue771
Year of Publication
2017
Topic
Acoustics and Vibration
Serviceability
Material
Glulam (Glue-Laminated Timber)
Author
Xu, Feng
Wang, Xiping
Teder, Marko
Liu, Yunfei
Publisher
De Gruyter
Year of Publication
2017
Country of Publication
Germany
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Acoustics and Vibration
Serviceability
Keywords
Decay
Delamination
Damage Detection
Moment Analysis
Wavelet Transform
Acoustic Signals
Language
English
Research Status
Complete
Series
Holzforschung
ISSN
1437-434X
Summary
Delamination and decay are common structural defects in old glued laminated timber (glulam) buildings, which, if left undetected, could cause severe structural damage. This paper presents a new damage detection method for glulam inspection based on moment analysis and wavelet transform (WT) of impact acoustic signals. Acoustic signals were collected from a glulam arch section removed from service through impact testing at various locations. The presence and positions of internal defects were preliminarily determined by applying time centroid and frequency centroid of the first moment. Acoustic signals were then decomposed by wavelet packet transform (WPT) and the energy of the sub-bands was calculated as characteristics of the response signals. The sub-bands of 0–375 Hz and 375–750 Hz were identified as the most discriminative features that are associated with decay and delamination and therefore are indicative of the presence of delamination or decay defects. A defect diagnosis algorithm was tested for its ability to identify internal decay and delamination in glulam. The results show that depth of delamination in a glulam member can be determined with reasonable accuracy.
Online Access
Free
Resource Link
Less detail

Adoption of Unconventional Approaches in Construction: The Case of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1358
Year of Publication
2016
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Jones, Kell
Stegemann, Julia
Sykes, Judith
Winslow, Peter
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
United Kingdom
Construction
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
Achieving sustainable development requires the decoupling of economic growth from the use of non-renewable resources. This depends on industry adopting unconventional approaches to production. This research explores the root causes of barriers to the adoption of such approaches in the construction industry, and applies a behavioural model to assess whether companies are hindered by capability, opportunity or motivation. The long history of lowest-cost tendering in construction has led to a path-dependent lock-in to conventional market-driven objectives of cost and risk reduction; it is suggested that locked-in companies lack the commercial opportunity and hence motivation, rather than the capability, to adopt approaches perceived to increase cost or risk. Such companies will therefore tend to resist unconventional approaches, restricting the physical opportunity for other project participants. This theory is explored in a case study of first adoptions of cross-laminated timber (CLT) in UK projects, using a survey and series of semi-structured interviews. The case study found that project contexts created market niches. This provided designers, who were motivated to use CLT, the opportunity to promote its use in the project. CLT was seen as key to successful resolution of project constraints, thereby providing motivation to other project participants to adopt the material.
Online Access
Free
Resource Link
Less detail

Ambient Vibration Measurement Data of a Four-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue2211
Year of Publication
2019
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Mugabo, Ignace
Barbosa, André
Riggio, Mariapaola
Batti, James
Publisher
Frontiers Media
Year of Publication
2019
Country of Publication
Switzerland
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Albina Yard
Ambient Vibration Testing
Operational Modal Analysis
Language
English
Research Status
Complete
Series
Frontiers in Built Environment
ISSN
2297-3362
Online Access
Free
Resource Link
Less detail

Ambient Vibration Tests of a Cross-Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue313
Year of Publication
2015
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Reynolds, Thomas
Harris, Richard
Chang, Wen-Shao
Bregulla, Julie
Bawcombe, Jonathan
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Wind
Keywords
Damping
Dynamic Movement
In Situ
Multi-Storey
Stiffness
Modal Properties
Ambient Vibration Method
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-6518
Summary
Cross-laminated timber has, in the last 6 years, been used for the first time to form shear walls and cores in multi-storey buildings of seven storeys or more. Such buildings can have low mass in comparison to conventional structural forms. This low mass means that, as cross-laminated timber is used for taller buildings still, their dynamic movement under wind load is likely to be a key design parameter. An understanding of dynamic lateral stiffness and damping, which has so far been insufficiently researched, will be vital to the effective design for wind-induced vibration. In this study, an ambient vibration method is used to identify the dynamic properties of a seven-storey cross-laminated timber building in situ. The random decrement method is used, along with the Ibrahim time domain method, to extract the modal properties of the structure from the acceleration measured under ambient conditions. The results show that this output-only modal analysis method can be used to extract modal information from such a building, and that information is compared with a simple structural model. Measurements on two occasions during construction show the effect of non-structural elements on the modal properties of the structure.
Online Access
Free
Resource Link
Less detail

An Accurate One-Dimensional Theory for the Dynamics of Laminated Composite Curved Beams

https://research.thinkwood.com/en/permalink/catalogue889
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Carpentieri, Gerardo
Tornabene, Francesco
Ascione, Luigi
Fraternalia, Fernando
Publisher
ScienceDirect
Year of Publication
2014
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Dynamic Behavior
Mechanical Theory
Finite Element Model
Bending
Shear
Deformation
Language
English
Research Status
Complete
Series
Journal of Sound and Vibration
Summary
We model the dynamic behavior of laminated curved beams on the assumption that the different layers of such structures are perfectly bonded at the interface and can show different flexural rotations from one another. We formulate a mechanical theory and a finite element model accounting for bending, shear, warping and extensional deformation modes, as well as radial, tangential and rotary inertias. The main novelty of the proposed theory consists of a generalization of layer-wise displacement approaches available in literature to the dynamics of beams with finite curvature. The work includes some numerical results related to the free vibration of laminated arches and showing different support conditions and aspect ratios to establish comparisons with different theories in the literature. We observe that an accurate mechanical modeling of curved laminated beams is crucial for correct estimation of the eigenfrequencies and eigenmodes of such structures within a 1D framework.
Online Access
Free
Resource Link
Less detail

555 records – page 1 of 56.