Skip header and navigation

11 records – page 1 of 2.

Bending Behavior of Regularly Spaced CLT Panels

https://research.thinkwood.com/en/permalink/catalogue1616
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
FEM
Bending Stiffness
Shear Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2368-2376
Summary
A regular alternation of lamellas and voids filled by insulating material within each layer of CLT can lead to cellular panels with improved acoustical, thermal and fire performance. In order to support the development of these innovative and lighter engineered wood products, their mechanical behavior is investigated in this paper by means of experiments and modeling. First, an experimental campaign on spaced CLT panels and related results are presented. Then, both simplified and refined modelings are applied. The chosen accurate modeling is a periodic homogenization scheme handled by a plate theory [1] and based on unit-cell strain energy computation with FEM. It appears that the simplified approach can predict the bending stiffness (EI) of CLT panels with large voids but not their transverse shear stiffness (GA) which can be precisely predicted with the more refined modeling. Finally, the influence of several panel’s parameters on the mechanical response is pointed out as well.
Online Access
Free
Resource Link
Less detail

Bending Properties of Innovative Multi-Layer Composite Laminated Panels

https://research.thinkwood.com/en/permalink/catalogue1985
Year of Publication
2018
Topic
Mechanical Properties
Material
LSL (Laminated Strand Lumber)
OSL (Oriented Strand Lumber)
Application
Beams

Bending Stiffness and Capacity of Multilayered Structures (1D)

https://research.thinkwood.com/en/permalink/catalogue1539
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Moosbrugger, Thomas
Guggenberger, Theodor
Krenn, Harald
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Bending Stiffness
Bending Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1069-1078
Summary
Within this paper the material and structural influences of orthogonal to the span oriented outer layers of multilayered plates are investigated. Therefor the influences on the bending stiffness and the bending capacity are examined. Theoretical investigations and practical tests on multilayered plates with one to three layers were performed. Based on the existing regulations and design procedures, the influence on the material properties will be shown and discussed.
Online Access
Free
Resource Link
Less detail

Design Method for Controlling Vibrations of Wood-Concrete Composite Floors Systems

https://research.thinkwood.com/en/permalink/catalogue1689
Year of Publication
2016
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Chui, Ying Hei
Ramzi, Redouane
Gagnon, Sylvain
Mohammad, Mohammad
Ni, Chun
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Keywords
Natural Frequencies
Deflection
Bending Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4237-4245
Summary
Wood-concrete composite slab floors provide a promising solution for achieving long spans and shallow wood-based floor systems for large and tall wood buildings. In comparison with conventional wood floor systems, such long span and heavy floors have a lower fundamental natural frequency, which challenges the floor vibration controlled design. A laboratory study, including subjective evaluation and measurement of the natural frequencies and one-kN static deflections, was conducted on wood-concrete composite floors. Method of calculation of the composite bending stiffness of the wood-concrete composite floor is proposed. The design criterion for human comfort was derived from the subjective evaluation results using the calculated fundamental natural frequency and 1 kN static deflection of one meter wide strip of the composite floor. The equation to directly determine the vibration controlled spans from the stiffness and mass was derived. Limited verification was performed. Further verification is needed when more field wood-concrete composite floors become available.
Online Access
Free
Resource Link
Less detail

Effect of Holes on the Structural Capacities of Laminated Veneer Lumber

https://research.thinkwood.com/en/permalink/catalogue2045
Year of Publication
2018
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)

Experimental Investigation on Eccentric Compression Performance of Semirigid Joints in Reticulated Timber Shells

https://research.thinkwood.com/en/permalink/catalogue1780
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Shell Structures
Author
Sun, Xiaoluan
Liu, Weiqing
Lu, Weidong
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Shell Structures
Topic
Connections
Mechanical Properties
Keywords
Compression Tests
Joints
Bending Stiffness
Bending Capacity
Failure Modes
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5463-5470
Summary
Compression tests were conducted on the glulam members under different eccentricities, including three cases of 0mm,50mm and 100mm respectively, to study the mechanical performance of the new assemblage joints in reticulated timber shells. The bending stiffness and bending capacity of joints were evaluated, at the same time, the influence of failure mode and the changes...
Online Access
Free
Resource Link
Less detail

Long-term Performance of Timber Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue2081
Year of Publication
2018
Topic
Serviceability
Mechanical Properties
Acoustics and Vibration
Material
Timber-Concrete Composite
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Floors

Long-term Testing of Timber-Steel Hybrid Beams

https://research.thinkwood.com/en/permalink/catalogue1754
Year of Publication
2016
Topic
Serviceability
Mechanical Properties
Material
Steel-Timber Composite
Application
Beams
Author
Riola Parada, Felipe
Winter, Wolfgang
Tavoussi, Kamyar
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Beams
Topic
Serviceability
Mechanical Properties
Keywords
Multi-Storey
Long-term
Bending Stiffness
Creep
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5015-5022
Online Access
Free
Resource Link
Less detail

Timber-Steel-Composite – A Possibility for Hybrid Structures of Long Span Timber Floors

https://research.thinkwood.com/en/permalink/catalogue1697
Year of Publication
2016
Topic
Mechanical Properties
Material
Steel-Timber Composite
Application
Floors
Author
Zimmer, Severin
Augustin, Manfred
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Steel-Timber Composite
Application
Floors
Topic
Mechanical Properties
Keywords
Four Point Bending Test
Long Span
Bending Stiffness
Full Scale
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4341-4351
Summary
The present contribution deals with the theoretical analysis of a selected geometry of CLT-elements combined with steel trapezoidal cross sections with a subsequent description of test specimens and the results of the conducted four-point-bending test. Used for long span floors this hybrid construction can be adjusted in its bending stiffness as needed. By placing the steel part into the tension zone a ductile failure mode can be achieved as well as notching the trapezoidal cross section is applicable easily. By performing full scale four-point-bending-tests of several test specimens it was possible to confirm the theoretical findings.
Online Access
Free
Resource Link
Less detail

Truss Plates for Use as Wood-Concrete Composite Shear Connectors

https://research.thinkwood.com/en/permalink/catalogue732
Year of Publication
2012
Topic
Connections
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Clouston, Peggi
Schreyer, Alexander
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2012
Country of Publication
United States
Format
Conference Paper
Material
Timber-Concrete Composite
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Connections
Design and Systems
Mechanical Properties
Keywords
shear connectors
Truss Plates
Slip-modulus
Ultimate Shear Capacity
Push-Out
Bending Stiffness
Strength
Four Point Bending Test
Language
English
Conference
Structures Congress 2011
Research Status
Complete
Notes
April 14-16, 2011, Las Vegas, Nevada, United States
Summary
Wood-concrete composite systems are well established, structurally efficient building systems for both new construction and rehabilitation of old timber structures. Composite action is achieved through a mechanical device to integrally connect in shear the two material components, wood and concrete. Depending on the device, different levels of composite action and thus efficiency are achieved. The purpose of this study was to investigate the structural feasibility and effectiveness of using truss plates, typically used in the making of metal-plate-connected wood trusses, as shear connectors for laminated veneer lumber (LVL)-concrete composite systems. The experimental program consisted of two studies. The first study established slip-modulus and ultimate shear capacity of the truss plates when used in an LVL-concrete push out assembly. The second study evaluated overall composite bending stiffness and strength in two full size T-beams when subjected to four-point bending. One beam employed two continuous rows of truss plates and the other employed one row. It was found that the initial stiffness of both T-beams was similar for one and two rows of truss plates but that the ultimate capacity was approximately 20% less with the use of only one row.
Online Access
Payment Required
Resource Link
Less detail

11 records – page 1 of 2.