Skip header and navigation

7 records – page 1 of 1.

Benchmarking of the Advanced Hygrothermal Model HygIRC – Large Scale Drying Experiment of the Mid-Rise Wood Frame Assembly

https://research.thinkwood.com/en/permalink/catalogue349
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Building Envelope Summary: Hygrothermal Assessment of Systems for Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue250
Year of Publication
2014
Topic
Design and Systems
Fire
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Climatological Analysis for Hygrothermal Performance Evaluation: Mid-Rise Wood

https://research.thinkwood.com/en/permalink/catalogue755
Year of Publication
2014
Topic
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Hygrothermal Modelling Benchmark: Comparison of hygIRC Simulation Results with Full Scale Experiment Results (Report to Research Consortium for Wood and Wood-Hybrid Mid-Rise Buildings)

https://research.thinkwood.com/en/permalink/catalogue1950
Year of Publication
2014
Topic
Moisture
Material
Light Frame (Lumber+Panels)
Application
Walls
Author
Cornick, Steven
van Reenen, David
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Keywords
Hygrothermal Models
Drying Rate
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Mid-Rise Wood: Characterization of Hygrothermal Properties

https://research.thinkwood.com/en/permalink/catalogue49
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Walls

Mid-Rise Wood Constructions: Hygrothermal Modelling and Analysis

https://research.thinkwood.com/en/permalink/catalogue6
Year of Publication
2014
Topic
Design and Systems
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Abdulghani, Khaled
Swinton, Michael
Cornick, Steve
Organization
National Research Council of Canada
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Design and Systems
Moisture
Keywords
Damage
Load Bearing
Moisture Content
Simulation
Hygrothermal
Language
English
Research Status
Complete
Summary
In general for both wall constructions simulation results tended to point to the exterior of the stud in the Lightweight Wood Frame (LWF) and Cross Laminated Timber (CLT) construction cases to be the area most at risk, specifically toward the exterior surface of the stud. Generally the total Moisture Content (MC) of the stud decreased to an acceptable level within the simulation period however the exterior surface appeared to remain at relatively high of moisture content level for significant periods of time. The presence of wood strapping covering the exterior face of the stud seemed to exacerbate the situation. If a support system for the cladding can be designed that does not rely on wood strapping or covers a minimum area of the stud the performance of this critical area could be improved. If the initial moisture content of the wood materials could be reduced before close up the performance would also be improved for all locations that did not show an increase in moisture content and the RHT index in the second year, at least with respect to computer modelling. This work however was not in scope of the work.
Online Access
Free
Resource Link
Less detail

Mid-Rise Wood Constructions: Investigation of Water Penetration Through Cladding and Deficiencies

https://research.thinkwood.com/en/permalink/catalogue756
Year of Publication
2014
Topic
Moisture
Wind
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

7 records – page 1 of 1.