Skip header and navigation

10 records – page 1 of 1.

Acoustics Summary: Sound Insulation in Mid-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue750
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Addendum to RR-335: Sound Transmission Through Nail-Laminated Timber (NLT) Assemblies

https://research.thinkwood.com/en/permalink/catalogue1868
Year of Publication
2018
Topic
Acoustics and Vibration
Material
NLT (Nail-Laminated Timber)
Application
Floors
Walls

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Acoustic Performance of Innovative Composite Wood Stud Partition Walls

https://research.thinkwood.com/en/permalink/catalogue1181
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Acoustics and Vibration
Application
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Deng, James
Wang, Xiang-Ming
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Walls
Topic
Design and Systems
Mechanical Properties
Acoustics and Vibration
Keywords
Sound Insulation
Manufacturing
Partition Walls
Steel
Language
English
Research Status
Complete
Summary
Airborne sound insulation performance of wall assemblies is a critical aspect which is directly associated with the comfort level of the occupants, which in turn affects the market acceptance. In single-family and low-rise residential buildings, the partition walls, whether loadbearing or non-loadbearing, are commonly framed with studs of solid sawn lumber of 2x4, 2x6, and 2x8. In commercial buildings and multi-storey residential buildings, the partition walls are commonly framed using light-gauge steel studs. The shortcomings of solid sawn lumber studs form the motivation for this project to develop wood studs that would address these shortcomings to promote greater wood use in partition walls. The conceptual design and fabrication work and the preliminary test results have shown that are partition-wall stud made out of composite wood material could have the same or better airborne sound insulation performance as compared to the 25 gauge steel stud. The concept is promising, with a manufacturing process and fabrication that would work and be practical.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Analytical Models for Balloon-Type CLT Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1877
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Chen, Zhiyong
Cuerrier-Auclair, Samuel
Popovski, Marjan
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Keywords
Lateral Loads
Shear
Mass Timber
Language
English
Research Status
Complete
Summary
Lack of research and design information for the seismic performance of balloon-type CLT shear walls prevents CLT from being used as an acceptable solution to resist seismic loads in balloon-type mass-timber buildings. To quantify the performance of balloon-type CLT structures subjected to lateral loads and create the research background for future code implementation of balloon-type CLT systems in CSA O86 and NBCC, FPInnovations initiated a project to determine the behaviour of balloon-type CLT construction. A series of tests on balloon-type CLT walls and connections used in these walls were conducted. Analytical models were developed based on engineering principles and basic mechanics to predict the deflection and resistance of the balloon-type CLT shear walls. This report covers the work related to development of the analytical models and the tests on balloon-type CLT walls that the models were verified against.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of The Arbora Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1179
Year of Publication
2018
Topic
Acoustics and Vibration
Design and Systems
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Sound Insulation
Tall Wood
Vibration Performance
Mid-Rise
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on vibration and sound insulation performance. The sound insulation and vibration performance may not affect building's safety, but affects occupants' comfort and proper operation of the buildings and the funciton of sensitive equipment...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Proposed Vibration-Controlled Design Criterion for Supporting Beams

https://research.thinkwood.com/en/permalink/catalogue1178
Year of Publication
2018
Topic
Acoustics and Vibration
Mechanical Properties
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Keywords
Floor Supporting Beam
Bending Stiffness
Language
English
Research Status
Complete
Summary
For wood floor systems, their vibration performance is significantly dependent on the conditions of their supports, specifically the rigidity of the support. Detrimental effects could result if the floor supports do not have sufficient rigidity. This is special ture for floor supporting beams. The problem of vibrating floor due to flexible...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

Analysis of Full-Scale Fire-Resistance Tests of Structural Composite Lumber Beams

https://research.thinkwood.com/en/permalink/catalogue366
Year of Publication
2014
Topic
Fire
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Topic
Fire
Keywords
Encapsulation
Type X Gypsum Board
Fire Resistance
Full Scale
Language
English
Research Status
Complete
Summary
The key objective of this study is to analyze full-scale fire-resistance tests conducted on structural composite lumber (SCL), namely laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL)...
Online Access
Free
Resource Link
Less detail

Apparent Sound Insulation in Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1276
Year of Publication
2017
Topic
Acoustics and Vibration
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

10 records – page 1 of 1.