Skip header and navigation

10 records – page 1 of 1.

Fire Performance Requirements of Non-Load-Bearing Wood-Frame In-Fill Walls in Concrete/Steel Hybrid Buildings. Part 1 - Literature Review of International Building Code

https://research.thinkwood.com/en/permalink/catalogue2621
Year of Publication
2013
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Walls
Hybrid Building Systems
Author
Lu, Ling
Organization
FPInnovations
Year of Publication
2013
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Hybrid Building Systems
Topic
Fire
Keywords
Fire-Retardant-Treatment (FRT)
Fire Resistance Rating
Building Code
Construction
Exterior Wall
Non-Loadbearing
Concrete
Steel
Mid-Rise
Language
English
Research Status
Complete
Summary
Related sections in the International Building Code (IBC) were reviewed regarding use of wood components in non-combustible buildings, and light-frame wood buildings or heavy timber buildings greater than 4-storeys in height. The highlights of this review are: a) Fire-retardant-treated (FRT) wood can be used in partitions when the required fire-resistance rating is not more than 2 hours. This includes all types and occupancy groups of Types I and II construction; b) FRT wood can be used in non-bearing exterior walls in Type I, II, III and IV construction; c) Wood components can be used in interior walls for Type III and IV construction; d) Wood components can be used in both interior and exterior walls for Type V construction. When a sprinkler system is installed according to NFPA 13 [1], it is possible to build a light-frame wood building or heavy timber building over 4-storeys according to the following provisions: a) Type IIIA 6-storey light-frame wood buildings using FRT wood for exterior walls for Occupancy group B (Business), H-4, and 5-storey light-frame wood buildings for Occupancy group F-2, H-3, I-1(Institutional), R (Residential), S-2; b) Type IIIB 5-storey light-frame wood buildings using FRT wood for exterior walls for Occupancy group R; c) Type IV (HT) 6-storeys timber buildings for Occupancy group B, F-2, H-4 and S-2; d) Type IV (HT) 5-storeys timber buildings for Occupancy group F-1, H-3, I-1, R, S-1 and U.
Online Access
Free
Resource Link
Less detail

Fire Performance Requirements of Non-Load-Bearing Wood-Frame In-Fill Walls in Concrete/Steel Hybrid Buildings. Part 2 - Review of the National Building Code of Canada

https://research.thinkwood.com/en/permalink/catalogue2622
Year of Publication
2013
Topic
Fire
Material
Light Frame (Lumber+Panels)
Application
Walls
Hybrid Building Systems
Author
Lu, Ling
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Hybrid Building Systems
Topic
Fire
Keywords
Non-Loadbearing
Fire Resistance
Concrete
Steel
Building Code
Fire Performance
Exterior Wall
Sprinklers
Mid-Rise
Language
English
Research Status
Complete
Summary
This project evaluates the National Building Codes of Canada (NBCC) clauses relevant to fire performance and performance requirements of non-load-bearing wood-frame in-fill walls in concrete/steel hybrid buildings. Related clauses in NBCC are reviewed regarding the use of wood components and non-load bearing wall systems in non-combustible buildings. The highlights of this review are: § An exterior non-loadbearing wall assembly with combustible components is allowed in non-combustible construction if: a) Building height is not more than 3 storeys or has a sprinkler system throughout ; b) The interior surfaces of the wall assembly are protected by a thermal barrier ; and c) The wall assembly satisfied the testing criteria for CAN/ULC S134 ; § Combustible interior wall finishes, other than foamed plastics, are allowed in non-combustible construction if the thickness is not greater than 25 mm and their flame spread rating (FSR) is not more than 150 ; § Combustible insulation, other than foamed plastics, is allowed in non-combustible construction if the flame-spread rating not more than 25 ; § Combustible insulation with a FSR not less than 25 and not more than 500 is allowed in exterior and interior walls of non-combustible construction if the building is non-sprinklered and not more than 18 m or sprinklered and protected by a thermal barrier ; § There are no obstacles for using wood-frame in-fill wall systems for interior partition walls in hybrid buildings: a) For non-sprinklered buildings not greater than 3 storeys or a floor area not greater than 600 m2 ; b) For sprinklered buildings. § Non-combustible construction allows combustible elements in partition walls in the following instances: a) Solid lumber partitions located in a fire compartment area are permitted in a non-sprinklered floor area not greater than 600 m2 with restrictions ; b) Solid lumber partitions not less than 38 mm thick and partitions that contain wood framing are permitted with restrictions. § Combustible cladding can be used under the following circumstances: a) When a wall assembly with exposing building face is between 10 to 25% tested by CAN/ULC-S134 and complies with Article 3.1.5.5 ; b) When a wall assembly with exposing building face is between 25 to 50%, is sprinklered throughout, installed on a gypsum board sheathing, and has a FSR not more than 25 (with restrictions) ; c) When a wall assembly with exposing building face is between 50 to 100%, cladding can be combustible for group A, B, C, D, E, F. § When a building is required to be of non-combustible construction, combustible elements are limited to the requirements in Subsection 3.1.5 on non-combustible construction ; § When comparing the NBCC with the International Building Code (IBC), the IBC is more in favour of using FRT wood frame in-fill walls with one more storey.
Online Access
Free
Resource Link
Less detail

Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America

https://research.thinkwood.com/en/permalink/catalogue2620
Year of Publication
2013
Topic
Energy Performance
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Finch, Graham
Wang, J.
Ricketts, D.
Organization
FPInnovations
Year of Publication
2013
Format
Guide
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Energy Performance
Design and Systems
Keywords
Thermal Performance
Multi-Family
Residential Buildings
Energy Efficiency
Building Code
Language
English
Research Status
Complete
Summary
The Guide for Designing Energy-Efficient Building Enclosures for Wood-Frame Multi-Unit Residential Buildings in Marine to Cold Climate Zones in North America was developed by FPInnovations in collaboration with RDH Building Engineering Ltd., the Homeowner Protection Office, Branch of BC Housing, and the Canadian Wood Council. The project is part of efforts within the Advanced Building Systems Program of FPInnovations to assemble and add to the knowledge base regarding Canadian wood products and building systems. The team of the Advanced Building Systems Program works with members and partners of FPInnovations to address critical technical issues that threaten existing markets for wood products or which limit expansion or access to such new markets. This guide was developed in response to the rapidly changing energy-efficiency requirements for buildings across Canada and the United States. This guide serves two major objectives: To assist architects, engineers, designers and builders in improving the thermal performance of building enclosures of wood multi-unit residential buildings (MURBs), in response to the increasingly stringent requirements for the energy efficiency of buildings in the marine to cold climate zones in North America (U.S. DOE/ASHRAE and NECB Climate Zones 5 through 7 and parts of Zone 4); To advance MURB design practices, construction practices, and material use based on best knowledge, in order to ensure the durable performance of wood-frame building enclosures that are insulated to higher levels than traditional wood-frame construction. The major requirements for thermal performance of building enclosures are summarized (up to February 2013), including those for the following codes and standards: 2011 National Energy Code of Canada for Buildings (2011 NECB); 2013 interim update of the 2010 National Building Code of Canada (2010 NBC, Section 9.36–Energy Efficiency); 2012 International Energy Conservation Code (2012 IECC); American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1– Energy Standard for Buildings Except Low-Rise Residential Buildings (2004, 2007, and 2010 versions). In addition to meeting the requirements of the various building codes and standards, a building may need to incorporate construction practices that reflect local preferences in material use, design and construction. Regional climate differences will also affect design solutions. This guide primarily addresses above-grade walls, below-grade walls and roofs of platform wood-frame construction. It also includes information regarding thermal performance of cross-laminated timber (CLT) assemblies as well as the use of non-bearing wood-frame exterior walls (infill walls) in wood post-and-beam and concrete structures. Examples of thermal resistance calculations, building assemblies, critical interface detailing, and appropriate material selection are provided to help guide designers and builders meet the requirements of the various energy-efficiency codes and standards, achieve above-code performance, and ensure long-term durability. This guide builds on the fundamentals of building science and on information contained within the Building Enclosure Design Guide: Wood-Frame Multi-Unit Residential Buildings, published by the Homeowner Protection Office, Branch of BC Housing. This guide is based on the best current knowledge and future updates are anticipated. The guide is not intended to be a substitute for professional advice that considers specific building parameters.
Online Access
Free
Resource Link
Less detail

Linear Dynamic Analysis for Wood Based Shear Walls and Podium Structures

https://research.thinkwood.com/en/permalink/catalogue740
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Author
Ni, Chun
Newfield, Grant
Wang, Jasmine
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Keywords
Deflection
Linear Dynamic Analysis
National Building Code of Canada
Stiffness
Floor Drifts
Language
English
Research Status
Complete
Summary
Utilizing Linear Dynamic Analysis (LDA) for designing steel and concrete structures has been common practice over the last 25 years. Once preliminary member sizes have been determined for either steel or concrete, building a model for LDA is generally easy as the member sizes and appropriate stiffness...
Online Access
Free
Resource Link
Less detail

Preliminary Assessment of Hygrothermal Performance of Cross-Laminated Timber Wall Assemblies Using Hygrothermal Models

https://research.thinkwood.com/en/permalink/catalogue2628
Year of Publication
2010
Topic
Moisture
Design and Systems
Serviceability
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, J.
Baldracchi, P.
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Moisture
Design and Systems
Serviceability
Keywords
Hygrothermal
Moisture Performance
Rainscreen
Language
English
Research Status
Complete
Summary
Preliminary simulation was carried out using hygIRC and WUFI, both 1-D hygrothermal models, to analyze moisture performance of rainscreened wood-frame walls and cross-laminated timber (CLT) walls for the climates in Vancouver and Calgary. The major results are as follows. In order to provide baseline knowledge, preliminary comparisons between hygIRC and WUFI were conducted to investigate the effects of climate data, wall orientations and rain intrusion on the performance of the rainscreened wood-frame walls based on Vancouver’s climate. hygIRC tended to produce almost constant moisture content (MC) of the plywood sheathing throughout a year but WUFI showed greater variations, particularly when the ventilation of the rainscreen cavity was neglected. Rainscreen cavity ventilation provided dramatic drying potentials for wall assemblies based on the WUFI simulation. hygIRC indicated that east-facing walls had the highest moisture load, but the differences between orientations seemed negligible in WUFI when the rainscreen cavity ventilation was taken into account. When 1% of wind-driven rain was simulated as an additional moisture load, hygIRC suggested that the rainscreen walls could not dry out in Vancouver, WUFI, however, indicated that they could dry to a safe MC level in the summer. The discrepancies in material property data between the two models and between different databases in WUFI (even for the same wood species) were found to be very large. In terms of wood sorption data, large differences existed at near-saturated RH levels. This is a result of using pressure-plate/membrane methods for measuring material equilibrium moisture content (EMC) under high RH conditions. The EMC of wood at near-100% RH conditions measured with these methods can be higher than 200%, suggesting wood in construction would decay without liquid water intrusion or severe vapour condensation. The pressure-plate/membrane methods also appeared to be highly species-dependent, and have higher EMC at a certain RH level for less permeable species, from which it is relatively difficult to remove water during the measurement. The hygrothermal simulation in this work suggested that such a species bias caused by testing methods could put impermeable species (most Canadian species) at a disadvantage to permeable species like southern pine during related durability design of building assemblies. In terms of using CLT for construction in Vancouver and Calgary, the WUFI simulations suggested that the use of less permeable materials such as EPS (expanded polystyrene insulation), XPS (extruded polystyrene insulation), self-adhered bituminous membrane and polyethylene in wall assemblies reduced the ability of the walls to dry. On the other hand, permeable assemblies such as those using relatively permeable insulation like semi-rigid mineral wool (rock wool) as exterior insulation, instead of less permeable exterior insulation materials, would help walls dry. The simulation also suggested that using CLT products with initially low MC would significantly reduce moisture-related risks, which indicated the importance of protecting CLT and avoiding wetting during transportation and construction. In addition, the simulation found that indoor relative humidity (RH) conditions generated by the indoor RH prediction models included in hygIRC and WUFI varied greatly under the same basic climate and building conditions. The intermediate method specified in ASHRAE Standard 160 P resulted in long periods of saturated RH conditions throughout a year for the Vancouver climate, which may not be representative of ordinary residential buildings in Vancouver. The simulation in this study is preliminary and exploratory. It would be arbitrary to recommend one model over the other based on this report or use the simulation results directly for CLT wall assembly design without consultation with building science specialists. However, this work revealed more opportunities for close collaborations between the wood science and the building science communities. More work should be carried out to develop appropriate testing methods and assemble material property data for hygrothermal simulation of wood-based building assemblies. Model improvement and field verification are also strongly recommended, particularly for new building systems such as CLT constructions.
Online Access
Free
Resource Link
Less detail

Quantifying the Impacts of Moisture and Load on Vertical Movement in a Simulated Bottom Floor of a 6-Storey Platform Frame Building

https://research.thinkwood.com/en/permalink/catalogue2619
Year of Publication
2013
Topic
Moisture
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, J.
King, L.
Organization
FPInnovations
Year of Publication
2013
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Moisture
Design and Systems
Keywords
Mid-Rise
Vertical Movement
Moisture Content
Shrinkage
Load-Induced Movement
Language
English
Research Status
Complete
Summary
Vertical movement of wood frame buildings has become an important consideration in recent years with the increase of building height in Europe, North America, and Asia up to 6-storeys. This movement is composed of wood shrinkage and load-induced movement including initial settlement and creep. It is extremely difficult to identify the relative contributions of these components while monitoring full size buildings. A laboratory test was therefore designed to do this under controlled environmental and loading conditions. Two identical small-scale platform frame structures with dimensional lumber floor joists were designed and constructed, with built-in vertical movement and moisture content monitoring systems. The two structures were first conditioned in a chamber to achieve an initial moisture content (MC) about 20% to simulate typical MC on exposed construction sites in wintertime in Coastal BC. After the two structures were moved from the conditioning chamber into the laboratory environment, using a unique cantilever system, Structure No. 1 was immediately loaded to measure the combined shrinkage and deformation in the process of drying. Structure No. 2 was not loaded until after the wood had dried to interior equilibrium moisture content to observe the shrinkage and load-induced movement separately. The load applied on the two structures simulated a dead load experienced by the bottom floor of a six-storey wood frame building. The vertical movement and MC changes were monitored over a total period of six months. Meanwhile, shrinkage coefficients were measured by using end-matched lumber samples cut from the plate members of the two structures to predict the shrinkage amounts of the horizontal members of the two structures. The results suggested that a load must be applied for movement to “show up” and occur in a downward direction. Without loads other than the wood weight, even shrinkage could show as upward movement. Monitoring of Structure No. 1 appeared to separate the contributions of wood shrinkage, initial settlement (bedding-in movement), and creep reasonably well. The entire movement amount reached about 19 mm after six months, which was comparable to the vertical movement measured from the bottom floor of a 4-storey wood-frame building in BC. Shrinkage accounted for over 60% of the vertical movement, with the other 40% contributed by load-induced movement including initial settlement and creep (when elastic compression was neglected); the magnitude of creep was similar to the initial settlement amount. Structure No. 2 showed less vertical movement but an increased settlement amount at the time of loading, indicating the presence of larger gaps between members when the wood was dry (with an estimated MC of 11%) before loading. Depending on construction sequencing, such settlement should occur with increase in loads during construction and can therefore be ignored in design. However, this test suggested that there may be a need to consider the impact of creep, in wet climates in particular, in addition to wood shrinkage. This laboratory test will be maintained for a longer period to observe any further vertical movement and the relative contributions of shrinkage and creep. Similar tests should be conducted for structures built with engineered wood floor joists, given the fact that most mid-rise platform buildings use engineered wood floor joists instead of lumber joists.
Online Access
Free
Resource Link
Less detail

Review and Survey on Differential Movement in Wood Frame Construction

https://research.thinkwood.com/en/permalink/catalogue2627
Year of Publication
2010
Topic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, J.
Ni, Chun
Organization
FPInnovations
Year of Publication
2010
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Deformation
Mid-Rise
Shrinkage
Movement
Language
English
Research Status
Complete
Summary
This report summarizes the existing knowledge on building movement related to wood-frame construction. This knowledge includes fundamental causes and characteristics of wood shrinkage, instantaneous and time-dependent deformations under load, major wood-based materials used for construction and their shrinkage characteristics, movement amounts in publications based on limited field measurement, and movement estimations by construction practitioners based on their experience with wood-frame construction. Movement analysis and calculations were also demonstrated by focusing on wood shrinkage based on common engineering design assumptions, using six-storey platform buildings as examples. The report then provides engineering solutions for key building locations where differential movement could occur, based on the literature review as well as a small-scale survey of the construction industry. The report emphasizes the importance of comprehensive analysis during design and construction to accommodate differential movement. Most building materials move when subjected to loading or when environmental conditions change. It is always good practice to detail buildings so that they can accommodate a certain range of movement, whether due to structural loading, moisture or temperature changes. For wood-frame buildings, movement can be reduced by specifying materials with lower shrinkage rates, such as engineered wood products and drier lumber. However, this may add considerable costs to building projects, especially when specifications have to be met through customized orders. Producing lumber with a lower moisture content adds significant costs, given the additional energy consumption, lumber degrade and sorting requirements during kiln drying. Specifying materials with lower moisture content at time of delivery to job site does not guarantee that wood will not get wet during construction, and excessive shrinkage could still be caused by excessively long time of exposure to rain during construction. On the other hand, effective drying can occur during the period between lumber delivery and lumber closed into building assemblies. Appropriate measures should be taken to ensure lumber protection against wetting, protected panel fabrication on site, good construction sequence to facilitate air drying, and supplementary heating before closing in to improve wood drying. This report also provides recommendations for future work, including field measurement of movement and construction sequencing optimization, in order to provide better information for the design and construction of wood buildings, five- and six-storey platform frame buildings in particular.
Online Access
Free
Resource Link
Less detail

Seismic Design of Timber Buildings with a Direct Displacement-Based Design Method

https://research.thinkwood.com/en/permalink/catalogue1904
Year of Publication
2013
Topic
Seismic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Frames
Wood Building Systems

Seismic Performance of Multi-Storey Timber Buildings Legnocase Building

https://research.thinkwood.com/en/permalink/catalogue375
Year of Publication
2013
Topic
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Seismic Performance of Wood Mid-Rise Structures

https://research.thinkwood.com/en/permalink/catalogue343
Year of Publication
2013
Topic
Seismic
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

10 records – page 1 of 1.