Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Assessment of Carbon Footprint of Laminated Veneer Lumber Elements in a Six Story Housing - Comparison to a Steel and Concrete Solution

https://research.thinkwood.com/en/permalink/catalogue2135
Year of Publication
2013
Topic
Environmental Impact
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
General Application

Brock Commons Tallwood House, University of British Columbia: An Environmental Building Declaration According to EN 15978 Standard

https://research.thinkwood.com/en/permalink/catalogue2158
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems

Can Mass-Timber Construction Materials Provide Effective Thermal Capacitance in New Homes?

https://research.thinkwood.com/en/permalink/catalogue241
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Application
Wood Building Systems

Carbon Aspects Promote Building with Wood

https://research.thinkwood.com/en/permalink/catalogue882
Year of Publication
2014
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Author
Arno Fruehwald
Marcus Knauf
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
General Application
Topic
Environmental Impact
Keywords
carbon pools
CO2 Reduction
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Online Access
Free
Resource Link
Less detail

Carbon Footprint Benchmarking of BC Multi-Unit Residential Buildings

https://research.thinkwood.com/en/permalink/catalogue2159
Year of Publication
2017
Topic
Environmental Impact
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Hybrid Building Systems

The Case for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue835
Edition
Second
Year of Publication
2017
Topic
General Information
Cost
Environmental Impact
Design and Systems
Application
Wood Building Systems

The Case for Tall Wood Buildings - How Mass Timber Offers a Safe, Economical, and Environmentally Friendly Alternative for Tall Building Structures

https://research.thinkwood.com/en/permalink/catalogue938
Year of Publication
2012
Topic
Design and Systems
Cost
Market and Adoption
Environmental Impact
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems

A Case Study to Investigate the Life Cycle Carbon Emissions and Carbon Storage Capacity of a Cross Laminated Timber, Multi-Storey Residential Building

https://research.thinkwood.com/en/permalink/catalogue2139
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Howard Darby Abbas Elmualim F. Kelly
Year of Publication
2013
Country of Publication
Germany
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Embodied Carbon
Life-Cycle Assessment
Multi-Storey
Multi-Family
Language
English
Conference
Sustainable Building Conference
Research Status
Complete
Notes
23-25 April 2013, Munich, Germany
Online Access
Free
Resource Link
Less detail

Chapter 11: Environmental Performance of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue817
Year of Publication
2011
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
General Application
Floors
Author
Lal Mahalle
Jennifer O'Connor
Alpha Barry
Organization
FPInnovations
Year of Publication
2011
Country of Publication
Canada
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
General Application
Floors
Topic
Environmental Impact
Keywords
Concrete
Floors
Life-Cycle Assessment
Volatile Organic Compounds
Environmental Footprint
Indoor Air Quality
Language
English
Research Status
Complete
Series
CLT Handbook - Canadian Edition
Abstract
Part 1 Environmental Footprint of CLT – Preliminary Findings In this part, we approximately determine some quantified environmental characteristics of CLT as a construction material, without conducting a full life cycle assessment (LCA). Finding no exi...
Online Access
Free
Resource Link
Less detail

Chapter 11: Environmental Performance of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue830
Year of Publication
2013
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
General Application
Author
Jennifer O'Connor
Lisa Podesto
Alpha Barry
Blane Grann
Organization
FPInnovations
Binational Softwood Lumber Council
Year of Publication
2013
Country of Publication
Canada
United States
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Mid-Rise
Volatile Organic Compounds
Environmental Footprint
North America
Sustainable Forest Practices
Indoor Air Quality
Language
English
Research Status
Complete
Series
CLT Handbook - US Edition
Abstract
The environmental footprint of CLT is frequently discussed as potentially beneficial when compared to functionally equivalent non-wood alternatives, particularly concrete systems. In this Chapter, the role of CLT in sustainable design is addressed. The embodied environmental impacts of CLT in a mid-rise building are discussed, with preliminary results from a comprehensive life cycle assessment (LCA) study. We also discuss other aspects of CLT's environmental profile, including impact on the forest resource and impact on indoor air quality from CLT emissions. The ability of the North American forest to sustainably support a CLT industry is an important consideration and is assessed from several angles, including a companion discussion regarding efficient use of material. Market projections and forest growth-removal are applied to reach a clear conclusion that CLT will not create a challenge to the sustainable forest practices currently in place in North America and safeguarded through legislation and/or third party certification programs. To assess potential impact on indoor air quality, CLT products with different thicknesses and glue lines were tested for their volative organic compounds (VOCs) including formaldehyde and acetaldehyde emissions. CLT was found to be in compliance with European labeling programs as well as the most stringent CARB limits for formaldehyde emissions. Testing was done on Canadian species, as there was no U.S. supplier of CLT at the time of this writing; because VOC emissions are affected by species, this work should be repeated from products made from different species.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.