Skip header and navigation

Refine Results By

10 records – page 1 of 1.

100-Year Performance of Timber-Concrete Composite Bridges in the United States

https://research.thinkwood.com/en/permalink/catalogue2561
Year of Publication
2020
Topic
Serviceability
Application
Bridges and Spans
Author
Wacker, James
Dias, Alfredo
Hosteng, Travis
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Application
Bridges and Spans
Topic
Serviceability
Keywords
Concrete
Composite
Superstructure
Performance
Inspection
Language
English
Research Status
Complete
Series
Journal of Bridge Engineering
Summary
The use of timber–concrete composite (TCC) bridges in the United States dates back to approximately 1924 when the first bridge was constructed. Since then a large number of bridges have been built, of which more than 1,400 remain in service. The oldest bridges still in service are now more than 84 years old and predominately consist of two different TCC systems. The first system is a slab-type system that includes a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system is a stringer system that includes either sawn timber or glulam stringers supporting a concrete deck top layer. The records indicate that most of the TCC highway bridges were constructed during the period of 1930–1960. The study presented in this paper discusses the experience and per-formance of these bridge systems in the US. The analysis is based on a review of the relevant literature and databases complemented with field inspections conducted within various research projects. Along with this review, a historical overview of the codes and guidelines available for the design of TCC bridges in the US is also included. The analysis undertaken showed that TCC bridges are an effective and durable design alternative for highway bridges once they have shown a high performance level, in some situations after more than 80 years in service with a low maintenance level.
Online Access
Free
Resource Link
Less detail

Accelerated Curing of Large Scale Glued-in-Rods

https://research.thinkwood.com/en/permalink/catalogue2018
Year of Publication
2018
Topic
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)

Accommodating Movement in High-Rise Wood-Frame Building Construction

https://research.thinkwood.com/en/permalink/catalogue1875
Year of Publication
2011
Topic
Design and Systems
Connections
Material
Steel-Timber Composite
Other Materials
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Floors
Walls

Accuracy Evaluation of Gamma-Method for Deflection Prediction of Partial Composite Beams

https://research.thinkwood.com/en/permalink/catalogue1911
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
Timber-Concrete Composite
Application
Wood Building Systems
Beams

Accurate Strength Parameters for Fasteners with Examples for Ring Shank Nails

https://research.thinkwood.com/en/permalink/catalogue1510
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Author
Munch-Andersen, Jørgen
Svensson, Staffan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Topic
Connections
Mechanical Properties
Keywords
Withdrawal Test
Ring Shank Nails
Fasteners
Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 344-352
Summary
Strength parameters for fasteners determined in accordance with the methods prescribed for the European CE-marking leads to quite different values for seemingly similar products from different manufactures. The results are hardly repeatable, to some extent due to difficulties in selecting representative timber samples for the testing. Beside this uncertainty, the declared values available to the designer concerns only structural timber, so no strength parameters are available for common engineered wood products such as LVL or plywood
Online Access
Free
Resource Link
Less detail

Acoustic Emission of Bolt-Bearing Testing on Structural Composite Lumbers

https://research.thinkwood.com/en/permalink/catalogue1443
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
Author
Du, Yicheng
Zhang, Jilei
Shi, Sheldon
Publisher
Society of Wood Science and Technology
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
Topic
Acoustics and Vibration
Keywords
Acoustic Emission
Bolted Connection
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
Acoustic emission (AE) characteristics of full-hole bolt-bearing testing on structural compositelumbers (SCL) including laminated veneer lumber (LVL) and oriented strand lumber (OSL) were investigated. The main conclusion is that AE cumulative counts vs time curves of the tested SCL in this study can be characterized with three distinct regions in terms of AE count rates: Region I with a lower constant count rate, Region II with varied and increased count rates, and Region III with a higher constant count rate. Differences in AE count rates of these three regions occurred between LVL and OSL. Also, within each tested SCL, differences in AE count rates were observed among the three regions. These differences in terms of AE count rates between two tested SCL indicate that different types of wood-based composites might have different AE characteristics in terms of the count rate changes when they are subjected to increased bolt compression load. In other words, these differences in AE characteristics between the two tested materials suggest AE “signatures” do exist for SCL bolt connections.
Online Access
Free
Resource Link
Less detail

Acoustic Performance of Timber and Timber-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue684
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Schluessel, Marc
Shrestha, Rijun
Crews, Keith
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Keywords
New Zealand
Australia
Building Code of Australia
Sound Insulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of light-weight timber floors, a structural floor was designed and built in laminated veneer lumber (LVL). The floor was evaluated in a laboratory setting based on its behaviour and then modified with suspended ceilings and different floor toppings. Twenty-nine different floor compositions were tested. The bare floor could not reach the minimum requirement set by the Building Code of Australia (BCA) but with additional layers, a sufficient result of R'w+Ctr 53 dB and L’nT,w + CI 50 dB was reached. Doubling of the concrete mass added a marginal improvement. With concrete toppings and suspended ceiling it is possible to reach the goal in airborne and impact sound insulation. The best result was achieved by combining of additional mass and different construction layers.
Online Access
Free
Resource Link
Less detail

Acoustic Testing of CLT and Glulam Floor Assemblies

https://research.thinkwood.com/en/permalink/catalogue1863
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Sabourin, Ivan
Organization
National Research Council of Canada
Publisher
Regupol America
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Transmission Loss
Impact Sound Transmission
Impact Sound Pressure Level
Language
English
Research Status
Complete
Series
Nordic Engineered Wood Report
Online Access
Free
Resource Link
Less detail

Actuarial Contribution to the Understanding of Insurable Risks Related to Non-residential High-rise Buildings in CLT

https://research.thinkwood.com/en/permalink/catalogue2194
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Université Laval
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
High-Rise
Non-Residential
Course of Construction Insurance
Research Status
In Progress
Notes
Project contact is Étienne Marceau at Université Laval
Summary
The objective of this project is to identify the risk factors taken into account in the pricing of an insurance contract for a construction site. This project aims to synthesize the quantitative approaches used in practice and presented in academic research for the pricing of home insurance and commercial insurance. Then, we aim to identify the preventive measures that can be taken to reduce the impact of different perils in the insurance of a construction site in wood or other.
Less detail

Adaptation of Advanced High R-Factor Bracing Systems into Heavy Timber Frames

https://research.thinkwood.com/en/permalink/catalogue1760
Year of Publication
2016
Topic
Seismic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Gilbert, Colin
Erochko, Jeffrey
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Seismic
Design and Systems
Mechanical Properties
Keywords
Quasi-Static
Cyclic Testing
Ductility
Damping Devices
R-factors
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5068-5077
Summary
Timber provides attractive earthquake performance characteristics for regions of high seismic risk, particularly its high strength-to-weight ratio; however, current timber structural systems are associated with relatively low design force reduction factors due to their low inherent ductility when compared to high-performance concrete and steel...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.