Skip header and navigation

Refine Results By

10 records – page 1 of 1.

7 – Glue-Laminated Timber (Glulam)

https://research.thinkwood.com/en/permalink/catalogue1165
Year of Publication
2015
Topic
General Information
Connections
Material
Glulam (Glue-Laminated Timber)
Author
Ong, Chee Beng
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Book Section
Material
Glulam (Glue-Laminated Timber)
Topic
General Information
Connections
Keywords
Production
Adhesives
Finger Joints
Language
English
Research Status
Complete
Series
Wood Composites
Online Access
Payment Required
Resource Link
Less detail

8 – Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1166
Year of Publication
2015
Topic
General Information
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Harris, Richard
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Topic
General Information
Mechanical Properties
Keywords
Manufacturing
Research
Joints
Language
English
Research Status
Complete
Series
Wood Composites
Online Access
Payment Required
Resource Link
Less detail

100-Year Performance of Timber-Concrete Composite Bridges in the United States

https://research.thinkwood.com/en/permalink/catalogue2561
Year of Publication
2020
Topic
Serviceability
Application
Bridges and Spans
Author
Wacker, James
Dias, Alfredo
Hosteng, Travis
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Application
Bridges and Spans
Topic
Serviceability
Keywords
Concrete
Composite
Superstructure
Performance
Inspection
Language
English
Research Status
Complete
Series
Journal of Bridge Engineering
Summary
The use of timber–concrete composite (TCC) bridges in the United States dates back to approximately 1924 when the first bridge was constructed. Since then a large number of bridges have been built, of which more than 1,400 remain in service. The oldest bridges still in service are now more than 84 years old and predominately consist of two different TCC systems. The first system is a slab-type system that includes a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system is a stringer system that includes either sawn timber or glulam stringers supporting a concrete deck top layer. The records indicate that most of the TCC highway bridges were constructed during the period of 1930–1960. The study presented in this paper discusses the experience and per-formance of these bridge systems in the US. The analysis is based on a review of the relevant literature and databases complemented with field inspections conducted within various research projects. Along with this review, a historical overview of the codes and guidelines available for the design of TCC bridges in the US is also included. The analysis undertaken showed that TCC bridges are an effective and durable design alternative for highway bridges once they have shown a high performance level, in some situations after more than 80 years in service with a low maintenance level.
Online Access
Free
Resource Link
Less detail

2021 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue2585
Topic
Design and Systems
Application
Wood Building Systems
Organization
FPInnovations
Country of Publication
Canada
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural
Seismic
Fire Performance
Vibration
Acoustics
Building Envelope
Sustainability
Prefabrication
Monitoring
Research Status
In Progress
Notes
Project contact is Erol Karacabeyli at FPInnovations
Summary
To support NRCan's Tall Wood Building Demonstration Initiative, FPInnovations developed and published the 2014 Edition of Technical Guide for the Design and Construction of Tall Wood Buildings in Canada. More than 80 technical professionals comprised of design consultants and experts from FPInnovations, the National Research Council, the Canadian Wood Council and universities were involved in its development. The Guide has gained national and worldwide reputation as one of the most complete and credible documents helping to introduce to the design and construction community, and Authorities Having Jurisdiction the terms "Mass Timber Construction" and "Hybrid Tall Wood Buildings". Since the publication of the First Edition, a number of tall wood buildings have been designed and constructed. Substantial regulatory changes are expected to happen based on the experience obtained from the demonstration initiative and the extensive research that has taken place domestically and internationally since the publication of the First Edition. These developments highlight a need for the Guide to be updated so that it aligns with efforts currently underway nationally and provincially and continues to lead in providing the design and construction community technical insight into new opportunities for building in wood. The First Edition of the Guide helped to focus the efforts of the early adopters who participated in NRCan's Tall Wood Building Demonstration Initiative. Updating and aligning the Guide with the release of the new National Building Code of Canada and the Canadian wood design standard (CSA O86), and sharing the experiences gained from tall wood buildings built since the First Edition, will not only continue to expand the base of early adopters, but also help to move aspects of mass timber and hybrid wood buildings into the mainstream.
Less detail

Accommodating Movement in High-Rise Wood-Frame Building Construction

https://research.thinkwood.com/en/permalink/catalogue1875
Year of Publication
2011
Topic
Design and Systems
Connections
Material
Steel-Timber Composite
Other Materials
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Floors
Walls

Acoustical Guide: Acoustic Research Report on Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1839
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Other Materials
Application
Floors

Acoustically-Tested Mass Timber Assemblies

https://research.thinkwood.com/en/permalink/catalogue2639
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
Glulam (Glue-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Floors
Walls

Acoustical Performance of Mass Timber Building Elements

https://research.thinkwood.com/en/permalink/catalogue2553
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
DLT (Dowel Laminated Timber)
NLT (Nail-Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Keywords
Sound Insulation
Acoustic Membrane
Acoustical Performance
Research Status
In Progress
Notes
Project contact is Jianhui Zhou at the University of Northern British Columbia
Summary
Building acoustics has been identified as one of the key subjects for the success of mass timber in the multi-storey building markets. The project will investigate the acoustical performance of mass timber panels produced in British Columbia. The apparent sound transmission class (ASTC) and impact insulation class (AIIC) of bare mass timber elements as wall and/ or floor elements will be measured through a lab mock-up. It is expected that a database of the sound insulation performance of British Columbia mass timber products will be developed with guidance on optimal acoustical treatments to achieve different levels of performance.
Less detail

Acoustic Characteristics of Cross-Laminated Timber Systems

https://research.thinkwood.com/en/permalink/catalogue2618
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Di Bella, Antonino
Mitrovic, Milica
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Wooden Building Technology
Building Acoustics
Noise Control
Flanking Transmission
Energy Efficiency
Sustainability
Language
English
Research Status
Complete
Series
Sustainability
Summary
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
Online Access
Free
Resource Link
Less detail

Acoustic Characteristics of Cross-Laminated Timber Systems

https://research.thinkwood.com/en/permalink/catalogue2650
Year of Publication
2020
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Di Bella, Antonino
Mitrovic, Milica
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Building Acoustics
Noise Control
Flanking Transmission
Energy Efficiency
Sustainability
Language
English
Research Status
Complete
Series
Sustainability
Summary
The growing diffusion of cross-laminated timber structures (CLT) has been accompanied by extensive research on the peculiar characteristics of this construction system, mainly concerning its economic and environmental benefits, lifecycle, structural design, resistance to seismic actions, fire protection, and energy efficiency. Nevertheless, some aspects have not yet been fully analysed. These include both the knowledge of noise protection that CLT systems are able to offer in relation to the possible applications and combinations of building elements, and the definition of calculation methods necessary to support the acoustic design. This review focuses on the main acoustic features of CLT systems and investigate on the results of the most relevant research aimed to provide key information on the application of acoustic modelling in CLT buildings. The vibro-acoustic behaviour of the basic component of this system and their interaction through the joints has been addressed, as well as the possible ways to manage acoustic information for calculation accuracy improvement by calibration with data from on-site measurements during the construction phase. This study further suggests the opportunity to improve measurement standards with specific reference curves for the bare CLT building elements, in order to compare different acoustic linings and assemblies on the same base. In addition, this study allows to identify some topics in the literature that are not yet fully clarified, providing some insights on possible future developments in research and for the optimization of these products.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.