Skip header and navigation

10 records – page 1 of 1.

Advanced Modelling of Cross Laminated Timber (CLT) Panels in Bending

https://research.thinkwood.com/en/permalink/catalogue1796
Year of Publication
2015
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Franzoni, Lorenzo
Lebée, Arthur
Lyon, Florent
Forêt, Gilles
Publisher
HAL archives-ouvertes.fr
Year of Publication
2015
Country of Publication
Germany
Format
Presentation
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Mechanical Properties
Keywords
Bending
Model
Panels
Shear
Stiffness
Failure Behavior
Shear Force
Reference Test
Language
English
Conference
Euromech Colloquim 556 Theoretical Numerical and Experimental Analyses of Wood Mechanics
Research Status
Complete
Notes
May 2015, Dresde, Germany
Online Access
Free
Resource Link
Less detail

An Algorithm for Numerical Modelling of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2362
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
D'Aronco, Gabriele
Publisher
Università di Padova
Year of Publication
2015
Country of Publication
Italy
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Connections
Panels
Model
Language
English
Research Status
Complete
Summary
Cross-laminated timber, also known as X-Lam or CLT, is well established in Europe as a construction material. Recently, implementation of X-Lam products and systems has begun in countries such as Canada, United States, Australia and New Zealand. So far, no relevant design codes for X-Lam construction were published in Europe, therefore an extensive research on the field of cross-laminated timber is being performed by research groups in Europe and overseas. Experimental test results are required for development of design methods and for verification of design models accuracy. This thesis is part of a large research project on the development of a software for the modelling of CLT structures, including analysis, calculation, design and verification of connections and panels. It was born as collaboration between Padua University and Barcelona"s CIMNE (International Centre for Numerical Methods in Engineering). The research project started with the thesis “Una procedura numerica per il progetto di edifici in Xlam” by Massimiliano Zecchetto, which develops a software, using MATLAB interface, only for 2D linear elastic analysis. Follows the phase started in March 2015, consisting in extending the 2D software to a 3D one, with the severity caused by modelling in three dimensions. This phase is developed as a common project and described in this thesis and in “Pre-process for numerical analysis of Cross Laminated Timber Structures” by Alessandra Ferrandino. The final aim of the software is to enable the modelling of an X-Lam structure in the most efficient and reliable way, taking into account its peculiarities. Modelling of CLT buildings lies into properly model the connections between panels. Through the connections modelling, the final aim is to enable the check of preliminarily designed connections or to find them iteratively, starting from hypothetical or random connections. This common project develops the pre-process and analysis phases of the 3D software that allows the automatic modelling of connections between X-Lam panels. To achieve the goal, a new problem type for GiD interface and a new application for KRATOS framework have been performed. The problem type enables the user to model a CLT structure, starting from the creation of the geometry and the assignation of numeric entities (beam, shell, etc.) to geometric ones, having defined the material, and assigning loads and boundary conditions. The user does not need to create manually the connections, as conversely needs for all commercial FEM software currently available; he just set the connection properties to the different sides of the panels. The creation of the connections is made automatically, keeping into account different typologies of connections and assembling of Cross-Lam panels. The problem type is special for XLam structures, meaning that all features are intentionally studied for this kind of structures and the software architecture is planned for future developments of the postprocess phase. It can be concluded that sound bases for the pre-process and analysis phases of the software have been laid. However, future research is required to develop the postprocess and verification phases of the research project.
Online Access
Free
Resource Link
Less detail

Analysis of the Timber-Concrete Composite Systems with Ductile Connection

https://research.thinkwood.com/en/permalink/catalogue113
Year of Publication
2013
Topic
Mechanical Properties
Material
Timber-Concrete Composite
Author
Zhang, Chao
Organization
University of Toronto
Year of Publication
2013
Country of Publication
Canada
Format
Thesis
Material
Timber-Concrete Composite
Topic
Mechanical Properties
Keywords
Bending
Ductility
Model
Load Deflection
Tension
Shear Connection
Language
English
Research Status
Complete
Online Access
Free
Resource Link
Less detail

An Analytical Model for Design of Reinforcement around Holes in Laminated Veneer Lumber (LVL) Beams

https://research.thinkwood.com/en/permalink/catalogue135
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams

Assessing The Flammability of Mass Timber Components: A Review

https://research.thinkwood.com/en/permalink/catalogue87
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Mehaffey, Jim
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Flame Spread
Model
Cone Calorimeter Testing
Buildings
Language
English
Research Status
Complete
Summary
In recent decades, the wood industry has developed a number of innovative mass timber products. Among others, structural composite lumber (SCL) products, such as parallel strand lumber (PSL), laminated strand lumber (LSL) and laminated veneer lumber (LVL...
Online Access
Free
Resource Link
Less detail

Bending Tests on Glued Laminated Timber Beams with Well-Known Material Properties

https://research.thinkwood.com/en/permalink/catalogue186
Year of Publication
2013
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Building Information Modeling (BIM) and Design for Manufacturing and Assembly (DfMA) for Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue1921
Year of Publication
2018
Topic
Design and Systems
Application
Wood Building Systems
Author
Staub-French, Sheryl
Poirier, Erik
Calderon, Francisco
Chikhi, Imen
Zadeh, Puyan
Chudasma, Divyarajsinh
Huang, Shitian
Publisher
BIM TOPiCS Research Lab
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Model
Building Information Modeling
Design for Manufacturing and Assembly
Construction
BIM
DfMA
Language
English
Research Status
Complete
Summary
The increasing appetite for innovation, performance and sustainability in the Canadian Architecture, Engineering, Construction, Owners and Operators (AECOO) community is leading to the development and deployment of approaches, be they tools, technologies, practices, etc., that are causing a significant shift in the delivery and management of built assets. When deployed...
Online Access
Free
Resource Link
Less detail

Connection and Performance of Two-Way CLT Plates Phase II

https://research.thinkwood.com/en/permalink/catalogue2086
Year of Publication
2019
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
PSL (Parallel Strand Lumber)
LVL (Laminated Veneer Lumber)
Author
Zhang, Chao
Asselstine, Julian
Lee, George
Lam, Frank
Organization
University of British Columbia
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
PSL (Parallel Strand Lumber)
LVL (Laminated Veneer Lumber)
Topic
Mechanical Properties
Connections
Keywords
Deflection
Two-Way
Bending
Finite Element Method
Model
Language
English
Research Status
Complete
Summary
In Phase I of Developing Large Span Two Way CLT Floor System (2017-18) we studied the performance of a steel plate connection system for the minor direction of CLT plates. The connected specimens had higher stiffness and strength compared to intact members under bending. In Phase II (2018-19) we designed and tested another connector based on...
Online Access
Free
Resource Link
Less detail

Damping in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue106
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams

Development of Robust Design Details for Improved Acoustics in Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2249
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
Université du Québec à Chicoutimi
Country of Publication
Canada
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Model
Airborne Sound Transmission
Impact Sound Transmission
Research Status
In Progress
Notes
Project contact is Sylvain Ménard at Université du Québec à Chicoutimi
Summary
To ensure the acoustic performance of wood constructions, the research group at the Sustainable Building Institute at Napier University has established a series of proven solutions. The advantage of this approach is to provide designers with solutions that have been technically validated, thus allowing them to overcome the burden of proposing to the manufacturer an acoustic solution. The tools to develop this concept will involve an understanding of the propagation of impact and airborne noises in the main CLT building design typologies, validating the main solutions through laboratory testing and providing proven solutions. Many NRC (National Research Council of Canada) trials could have been avoided. Conducting tests is expensive, and it would be interesting to link the test results to the modeling results.
Less detail

10 records – page 1 of 1.