Skip header and navigation

10 records – page 1 of 1.

An Overview on Retrofit for Improving Building Energy Efficiency

https://research.thinkwood.com/en/permalink/catalogue365
Year of Publication
2015
Topic
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Wang, Jieying
Ranger, Lindsay
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Concrete
Energy Consumption
Envelope
Retrofit
Single Family Houses
Steel
Language
English
Research Status
Complete
Summary
This literature review aims to provide a general picture of retrofit needs, markets, and commonly used strategies and measures to reduce building energy consumption, and is primarily focused on energy retrofit of the building envelope. Improving airtightness and thermal performance are the two key aspects for improving energy performance of the building envelope and subsequently reducing the energy required for space heating or cooling. This report focuses on the retrofit of single family houses and wood-frame buildings and covers potential use of wood-based systems in retrofitting the building envelope of concrete and steel buildings. Air sealing is typically the first step and also one of the most cost-effective measures to improving energy performance of the building envelope. Airtightness can be achieved through sealing gaps in the existing air barrier, such as polyethylene or drywall, depending on the air barrier approach; or often more effectively, through installing a new air barrier, such as an airtight exterior sheathing membrane or continuous exterior insulation during retrofit. Interface detailing is always important to achieve continuity and effectiveness of an air barrier. For an airtight building, mechanical ventilation is needed to ensure good indoor air quality and heat recovery ventilators are typically required for an energy efficient building. Improving thermal resistance of the building envelope is the other key strategy to improve building energy efficiency during retrofit. This can be achieved by: 1. blowing or injecting insulation into an existing wall or a roof; 2. building extra framing, for example, by creating double-stud exterior walls to accommodate more thermal insulation; or, 3. by installing continuous insulation, typically on the exterior. Adding exterior insulation is a major solution to improving thermal performance of the building envelope, particularly for large buildings. When highly insulated building envelope assemblies are built, more attention is required to ensure good moisture performance. An increased level of thermal insulation generally increases moisture risk due to increased vapour condensation potential but reduced drying ability. Adding exterior insulation can make exterior structural components warmer and consequently reduce vapour condensation risk in a heating climate. However, the vapour permeance of exterior insulation may also affect the drying ability and should be taken into account in design. Overall energy retrofit remains a tremendous potential market since the majority of existing buildings were built prior to implementation of any energy requirement and have large room available for improving energy performance. However, significant barriers exist, mostly associated with retrofit cost. Improving energy performance of the building envelope typically has a long payback time depending on the building, climate, target performance, and measures taken. Use of wood-based products during energy retrofit also needs to be further identified and developed.
Online Access
Free
Resource Link
Less detail

A Comparative Life Cycle Assessment of Two Multi Storey Residential Apartment Buildings

https://research.thinkwood.com/en/permalink/catalogue403
Year of Publication
2015
Topic
Environmental Impact
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Comparison of Environmental Performance of a Five-Storey Building Built with Cross-Laminated Timber and Concrete

https://research.thinkwood.com/en/permalink/catalogue65
Year of Publication
2012
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Chen, Yue
Organization
University of British Columbia
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Canada
Concrete
Energy Consumption
Environmental
Mid-Rise
North America
Office Buildings
Passive Buildings
Language
English
Research Status
Complete
Summary
Cross Laminated Timber (CLT), which is made by laminating dimension lumber at right angles, is an innovative high-performance building material that offers many positive attributes including renewability, high structural stability, storage of carbon during the building life, good fire resistance, possibility of material recycling and reuse. It is conceptually a sustainable and cost effective structural timber solution that can compete with concrete in non-residential and multi-family mid-rise building market. Therefore, there is a need to understand and quantify the environmental attribute of this building system in the context of North American resources, manufacturing technology, energy constraints, building types, and construction practice. This study is to compare energy consumption of two building designs using different materials, i.e. CLT and concrete.
Online Access
Free
Resource Link
Less detail

Cost, Time and Environmental Impacts of the Construction of the New NMIT Arts and Media Building

https://research.thinkwood.com/en/permalink/catalogue251
Year of Publication
2011
Topic
Cost
Design and Systems
Energy Performance
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
John, Stephen
Mulligan, Kerry
Perez, Nicolas
Love, Simon
Page, Ian
Organization
University of Canterbury
Year of Publication
2011
Country of Publication
New Zealand
Format
Report
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Cost
Design and Systems
Energy Performance
Keywords
Life Cycle Cost Study
Language
English
Research Status
Complete
Summary
This report was produced by the University of Canterbury for the Ministry of Agriculture and Forestry under Expression of Interest MAF POL 0910-11665. The report covers extensive research carried out on the construction of the new Arts and Media building at Nelson Marlborough Institute of Technology in Nelson, New Zealand, between March 2010 and June 2011. The collaborative research programme was directed by the Department of Civil and Natural Resources Engineering at the University of Canterbury (UC), Christchurch. Major contributions to the research programme were made by third-party industry consultants and reported in separate documents – a copy of all the original reports is included in the Appendices ; ScionResearch - Carbon and Energy Footprint of a new three storey building at Nelson Marlborough Institute of Technology (NMIT), Simon Love (2011); BRANZ (Building Research Association of New Zealand) - Nelson-Marlborough Institute of Technology Arts Building – An assessement of life cycle costs for alternative designs (BRANZ report E568), Ian Page (2010); Aurecon Group and ISJ Architects (working together) – NMIT Alternative Structural Design; Ref. 210688-001 (August, 2010).
Online Access
Free
Resource Link
Less detail

Evolution of the Building Envelope in Modern Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1799
Year of Publication
2017
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Keywords
Energy Efficiency
Building Envelope
Tall Wood
Wood Infill Walls
Podium Structures
Articulated Buildings
Language
English
Research Status
Complete
Summary
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
Online Access
Free
Resource Link
Less detail

High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue1918
Year of Publication
2019
Topic
Energy Performance
Application
Walls
Wood Building Systems
Roofs
Rooms
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Application
Walls
Wood Building Systems
Roofs
Rooms
Topic
Energy Performance
Keywords
Mid-Rise
Durability
Vertical Movement
Indoor Environmental Conditions
Language
English
Research Status
Complete
Summary
This monitoring study aims to generate field performance data from a highly energy efficient building in the west coast climate as part of FPInnovations’ efforts to assist the building sector in developing durable and energy efficient wood-based buildings. A six-storey mixed-use building, with five storeys of wood-frame residential construction on top of concrete commercial space was completed in early 2018 in the City of Vancouver. It was designed to meet the Passive House standard. The instrumentation aimed to gather field data related to the indoor environment, building envelope moisture performance, and vertical movement to address the most critical concerns among practitioners for such buildings.
Online Access
Free
Resource Link
Less detail

Improving Thermal Efficiency in Lightweight Construction: Mass Timber as Thermal Mass

https://research.thinkwood.com/en/permalink/catalogue1915
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Author
Dewsbury, Mark
Publisher
Forest & Wood Products Australia
Year of Publication
2016
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Ceilings
Roofs
Topic
Energy Performance
Keywords
Thermal Efficiency
Lightweight
Low-Rise
Mid-Rise
Low-Energy
Language
English
Research Status
Complete
Series
Market Access, Project Number: PNA289-1213a
ISBN
978-1-925213-40-9
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of a Cross Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue66
Year of Publication
2013
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Passive Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue24
Year of Publication
2013
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)

Solutions for Upper Mid-Rise and High-Rise Mass Timber Construction: High Energy Performance Six-Storey Wood-Frame Building: Field Monitoring

https://research.thinkwood.com/en/permalink/catalogue2599
Year of Publication
2019
Topic
Energy Performance
Design and Systems
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Energy Performance
Design and Systems
Keywords
Mid-Rise
High-Rise
Indoor Environmental Conditions
Durability
Vertical Movement
Language
English
Research Status
Complete
Summary
This monitoring study was initiated to collect performance data from a highly energy efficient, six-storey building located in the coastal climate of British Columbia. This work focuses on the following objectives by installing sensors during the construction: · To provide information about the indoor environment of a highly energy efficient building · To provide field data about the durability performance of an innovative high energy efficiency exterior wall solution for mid-rise wood-frame construction · To provide information on the amounts of vertical movement in wood-frame exterior walls and interior walls below a roof/roof deck
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.