Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Accommodating Shrinkage in Multi-Story Wood-Frame Structures

https://research.thinkwood.com/en/permalink/catalogue712
Year of Publication
2017
Topic
Design and Systems
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Acoustics Summary: Sound Insulation in Mid-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue750
Year of Publication
2014
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of The Arbora Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1179
Year of Publication
2018
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Sound Insulation
Tall Wood
Vibration Performance
Mid-Rise
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on vibration and sound insulation performance. The sound insulation and vibration performance may not affect building's safety, but affects occupants' comfort and proper operation of the buildings and the funciton of sensitive equipment, consequently the acceptance of midrise and tall wood buildings in market place. Lack of data, knowledge and experience of sound and vibration performance of tall wood buildings is one of the issues related to design and construction of tall wood buildings.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Apparent Sound Insulation in Mass Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2616
Year of Publication
2020
Topic
Acoustics and Vibration
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Author
Mahn, Jeffrey
Quirt, David
Mueller-Trapet, Markus
Hoeller, Christoph
Organization
National Research Council of Canada. Construction
Publisher
National Research Council of Canada. Construction
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Application
Floors
Walls
Topic
Acoustics and Vibration
Design and Systems
Keywords
Airborne Sound Transmission
Apparent Sound Transmission Class
Sound Transmission
Adhesive
Language
English
Research Status
Complete
Summary
This Report presents the results from experimental studies of the airborne sound transmission of mass timber assemblies, together with an explanation of the calculation procedures to predict the apparent sound transmission class (ASTC) rating between adjacent spaces in a building constructed of mass timber assemblies. The experimental data which is the foundation for this Report includes the laboratory measured sound transmission loss of wall and floor assemblies constructed of Cross Laminated Timber (CLT), Nail-Laminated Timber (NLT) and Dowel-Laminated Timber (DLT), and the laboratory measured vibration reduction index between assemblies of junctions between CLT assemblies. The presentation of the measured data is combined with the presentation of the appropriate calculation procedures to determine the ASTC rating in buildings comprised of such assemblies along with numerous worked examples. Several types of CLT constructions are commercially available in Canada, but this study focused on CLT assemblies with an adhesive applied between the faces of the timber elements in adjacent layers, but no adhesive bonding between the adjacent timber elements within a given layer. These CLT assemblies could be called “Face-Laminated CLT Assemblies” but are simply referred to as CLT assemblies in this Report. Another form of CLT assemblies does have adhesive applied between the faces of the timber elements in adjacent layers as well as adhesive to bond the adjacent timber elements within a given layer. These assemblies are referred to as “Fully-Bonded CLT Assemblies” in this Report. Because fully-bonded CLT assemblies have different properties than face-laminated CLT assemblies, the sound transmission data and predictions in this Report do not apply to fully-bonded CLT assemblies.
Online Access
Free
Resource Link
Less detail

Application of Analysis Tools From Newbuilds Research Network in Design of a High-Rise Wood Building

https://research.thinkwood.com/en/permalink/catalogue278
Year of Publication
2015
Topic
Design and Systems
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
NEWBuildS
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
High-Rise
British Columbia Building Code
Mixed-Use
Language
English
Research Status
Complete
Summary
In this project, a conceptual but realistic 20-storey building of hybrid construction incorporating massive timber panels and other structural materials was identified. The project team, consisting of three practicing consultants and 6 graduate student and post-doctoral researchers from NEWBuildS, undertook an analysis and engineering design of the demonstration building. An advisory group that includes FPInnovations scientists, NEWBuildS supervisors of the graduate students and Post Doctoral Fellows, provides technical support to the project team. The performance attributes addressed in the project were structural performance under seismic and wind load, fire resistance and building envelope. . This publication documents the analysis and design of the demonstration building, and identifies technical issues that require further study.
Online Access
Free
Resource Link
Less detail

Basis of Design - Performance-Based Design and Structural CD Drawings for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1827
Year of Publication
2017
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Organization
KPFF Consulting Engineers
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Structural
Wind Load
Sustainability
Reliability
Seismic
Earthquake Resistance
Serviceability
Design
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Notes
Document includes 100% CD construction drawings
Summary
This document outlines the basis of design for the performance-based design and nonlinear response history analysis of the Framework Project in Portland, OR. Performance-based design is pursued for this project because the proposed lateral force-resisting system, consisting of post-tensioned rocking cross-laminated timber (CLT) walls is not included in ASCE/SEI 7-10 Table 12.2-1.
Online Access
Free
Resource Link
Less detail

Braced Frame System for Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2527
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Author
Iqbal, Asif
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Topic
Design and Systems
Seismic
Keywords
Lateral Load Resisting Systems
Sustainability
Post-Tensioned
Connections
Braced Frame Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Online Access
Free
Resource Link
Less detail

Building Envelope Summary: Hygrothermal Assessment of Systems for Mid-Rise Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue250
Year of Publication
2014
Topic
Design and Systems
Fire
Moisture
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Building Information Modeling (BIM) and Design for Manufacturing and Assembly (DfMA) for Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue1921
Year of Publication
2018
Topic
Design and Systems
Application
Wood Building Systems
Author
Staub-French, Sheryl
Poirier, Erik
Calderon, Francisco
Chikhi, Imen
Zadeh, Puyan
Chudasma, Divyarajsinh
Huang, Shitian
Publisher
BIM TOPiCS Research Lab
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Model
Building Information Modeling
Design for Manufacturing and Assembly
Construction
BIM
DfMA
Language
English
Research Status
Complete
Summary
The increasing appetite for innovation, performance and sustainability in the Canadian Architecture, Engineering, Construction, Owners and Operators (AECOO) community is leading to the development and deployment of approaches, be they tools, technologies, practices, etc., that are causing a significant shift in the delivery and management of built assets. When deployed...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.