Skip header and navigation

10 records – page 1 of 1.

Analyse de Performance Acoustique et de Résistance au Feu

https://research.thinkwood.com/en/permalink/catalogue2752
Year of Publication
2018
Topic
Acoustics and Vibration
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Organization
Société en commandite NEB
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Acoustics and Vibration
Fire
Keywords
Origine
Fire Resistance
Acoustic Performance
Tall Timber
Multi-Storey
Language
French
Research Status
Complete
Summary
Le présent rapport décrit une partie des activités de recherche et développement (R&D) en lien avec la démonstration de la résistance au feu ainsi que les études sur la performance acoustique effectuées dans le cadre de la construction du bâtiment Origine. Ce bâtiment est la tour résidentielle en bois massif la plus haute au Québec. Sa réalisation a débuté en 2015 à la suite des analyses préliminaires de faisabilité technique-économique qui se sont étalées pendant toute l’année 2014. La construction et l’installation se sont finalisées vers la fin de 2017. En premier lieu, le rapport présente les démarches liées à la réalisation d’un exercice de démonstration d’incendie pour une cage d’escaliers/ascenseur avec une chambre d’habitation adjacente, l’analyse de résultats et les principales conclusions en lien avec la pertinence de l’utilisation du bois massif pour des édifices de grande hauteur. En ce qui concerne la performance acoustique, le rapport présente la méthodologie d’étude et d’analyse des résultats des tests acoustiques pour des assemblages de mur et de plancher utilisés dans le projet Origine. De plus, ce rapport facilite la compréhension des activités réalisées et permet de montrer objectivement la capacité des produits en bois massif à offrir un environnement sécuritaire et confortable aux occupants de bâtiments multi-étagés. Les principaux résultats indiquent que les cages d’escaliers/ascenseur faites en bois massif, conçues pour une résistance au feu équivalente à celle faites en béton, peuvent offrir une excellente performance et servent d’alternatives adéquates pour les bâtiments multi-étagés. En ce qui concerne le développement d’assemblages acoustiques pour les murs et les planchers en bois massif, il a été prouvé qu’une approche multicritère permet d’offrir des solutions performantes à des coûts raisonnables. Finalement, il est clair que ce projet constitue un jalon très important dans le chemin d’acceptation des bâtiments multi-étagés en bois massif au Québec et au Canada. Sa construction, faite presque entièrement en bois, a nécessité de nombreux efforts économiques, de R&D, de conception et d’installation. De plus, les activités réalisées pour l’acceptation de ce type de construction ont permis de mettre en place de nouvelles technologies et des techniques de conception qui faciliteront la réplication de ce type de projet partout en Amérique du Nord.
Online Access
Free
Resource Link
Less detail

A Comparative Life Cycle Assessment of Two Multi Storey Residential Apartment Buildings

https://research.thinkwood.com/en/permalink/catalogue403
Year of Publication
2015
Topic
Environmental Impact
Energy Performance
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems

Design Options for Three- and Four-Storey Wood School Buildings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2373
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Author
Bevilacqua, Nick
Dickof, Carla
Wolfe, Ray
Gan, Wei-Jie
Embury-Williams, Lynn
Organization
Fast + Epp
Wood Works! BC
Thinkspace
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Construction
Education
School Buildings
Mass Timber
Multi-Storey
Building Code
Fire Protection
Language
English
Research Status
Complete
Summary
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Online Access
Free
Resource Link
Less detail

Fire Code Development - A Literature Review of North American and Chinese Fire Regulations Related to Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue358
Year of Publication
2014
Topic
Fire
Market and Adoption
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Dagenais, Christian
Peng, Lei
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Fire
Market and Adoption
Keywords
Multi-Storey
North America
China
Fire Safety
Language
English
Research Status
Complete
Summary
Wood frame construction in China is currently limited to 3-storey buildings, mainly due to fire risk perceptions. However, multi-storey (more than 3 storeys) wood frame buildings are gaining popularity around the globe, while providing an acceptable level of performance in...
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of a Cross Laminated Timber Building

https://research.thinkwood.com/en/permalink/catalogue66
Year of Publication
2013
Topic
Environmental Impact
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Productivity in Multi-storey Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue2096
Year of Publication
2019
Topic
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction

https://research.thinkwood.com/en/permalink/catalogue2374
Year of Publication
2019
Topic
Design and Systems
Market and Adoption
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Organization
GHL Consultants Ltd.
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Fire
Keywords
Building Code
Education
School Buildings
Multi-Storey
Fire Test
Fire Safety
Technical Risk
Process Risk
Mass Timber
Language
English
Research Status
Complete
Summary
This report explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys. Three- and four-storey schools and larger floor areas in wood construction require an Alternative Solution. The report identifies key fire safety features offered by combustible construction materials including tested and currently widely available engineered mass timber products, such as glued-laminated timber and cross-laminated timber. A risk analysis identifies the risk areas defined by the objectives of the British Columbia Building Code (BCBC 2018) and evaluates the level of performance of the Building Code solutions for assembly occupancies vis-à-vis the level of performance offered by the proposed schools up to four storeys in building height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This report is closely related to the study Design Options for Three-and Four-Storey Wood School Buildings in British Columbia, which illustrates the range of possible timber construction approaches for school buildings that are up to four storeys in height.
Online Access
Free
Resource Link
Less detail

Seismic Performance of Multi-Storey Timber Buildings: TUGraz Building

https://research.thinkwood.com/en/permalink/catalogue5
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Costa, Alfredo
Flatscher, Georg
Schickhofer, Gerhard
Candeias, Paulo
Organization
Seismic Engineering Research Infrastructures for European Synergies
Year of Publication
2013
Country of Publication
Italy
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Connections
Shake Table Test
Steel
Multi-Storey
Language
English
Research Status
Complete
Series
Timber Buildings Project
Summary
This document reports the outcome of the seismic test on the TUGraz building, the fourth in a total of four buildings included in the TIMBER BUILDINGS Project. This building is a cross laminated system (CTL). The goal of the tests was to assess the seismic performance of the building, panel elements and steel connectors, defined in terms of relative displacements and hold-down forces. This report presents the results of the experimental tests carried out in the LNEC 3D shaking table on a cross laminated system (CTL). The tests were carried out on February 20 and 21, 2013 on a three storey real scale building.
Online Access
Free
Resource Link
Less detail

Testing R22+ Wood-Frame Walls for Hygrothermal Performance in the Vancouver Climate: Field Wall Performance

https://research.thinkwood.com/en/permalink/catalogue2768
Year of Publication
2021
Topic
Energy Performance
Moisture
Material
Light Frame (Lumber+Panels)
Application
Walls
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2021
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Topic
Energy Performance
Moisture
Keywords
Mid-Rise
Energy Efficiency
Exterior Wall
Hygrothermal
Multi-Storey
Language
English
Research Status
Complete
Summary
This new study aims to generate hygrothermal, particularly moisture-related performance data for light wood-frame walls meeting the R22 effective (RSI 3.85) requirement for buildings up to six storeys in the City of Vancouver. The overarching goal is to identify and develop durable exterior wood-frame walls to assist in the design and construction of energy efficient buildings across the country. Twelve test wall panels in six types of wall assemblies are assessed in this study. The wall panels, each measuring 4 ft. (1200 mm) wide and 8 ft. (2400 mm) tall, form portions of the exterior walls of a test hut located in the rear yard of FPInnovations’ Vancouver laboratory. This report, second in a series on this study, documents the performance of these wall assemblies based on the data collected over 19 months’ period from October 2018 to May 2020, covering two winter seasons and one summer.
Online Access
Free
Resource Link
Less detail

Transition Strategies: Accelerating Social Acceptance and Removing the Barriers to Prefabricated Multi-Storey Timber Urban Infill Developments in Australia Using CLT Construction Systems

https://research.thinkwood.com/en/permalink/catalogue50
Year of Publication
2012
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Lehmann, Steffen
Reinschmidt, Amanda
Mustillo, Lauren
Organization
Forest and Wood Products Australia
Year of Publication
2012
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
Australia
Multi-Storey
Social Acceptance
Consumer Behaviour
Housing
Language
English
Research Status
Complete
Summary
This report was commissioned to review and formulate strategies for the accelerated uptake and social acceptance of living in multi-storey cross-laminated timber (CLT)-constructed buildings in infill developments to: remove cultural barriers, meet the sustainability expectations of potential buyers and obtain a better understanding of how we can facilitate the rapid introduction of this innovative construction technology in Australia. An extensive review of literature within the field was conducted to gather an overview of the barriers that inhibit consumers, governments and industry in the uptake and acceptance of CLTconstructed buildings for infill development. Data was collected on CLT buildings worldwide, to build a comprehensive picture of multi-storey timber buildings using CLT-construction systems.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.