Skip header and navigation

10 records – page 1 of 1.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Analysis of Full-Scale Fire-Resistance Tests of Structural Composite Lumber Beams

https://research.thinkwood.com/en/permalink/catalogue366
Year of Publication
2014
Topic
Fire
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Author
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Beams
Topic
Fire
Keywords
Encapsulation
Type X Gypsum Board
Fire Resistance
Full Scale
Language
English
Research Status
Complete
Summary
The key objective of this study is to analyze full-scale fire-resistance tests conducted on structural composite lumber (SCL), namely laminated veneer lumber (LVL), parallel strand lumber (PSL) and laminated strand lumber (LSL)...
Online Access
Free
Resource Link
Less detail

Bending Tests on Glued Laminated Timber Beams with Well-Known Material Properties

https://research.thinkwood.com/en/permalink/catalogue186
Year of Publication
2013
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Bending Tests on Glulam-CLT Beams connected with Double-Sided Punched Metal Plate Fasteners and Inclined Screws

https://research.thinkwood.com/en/permalink/catalogue320
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Beams
Floors

Calculating the Fire Resistance of Wood Members and Assemblies: Technical Report No. 10

https://research.thinkwood.com/en/permalink/catalogue2492
Year of Publication
2020
Topic
Fire
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Columns
Beams
Floors
Walls
Wood Building Systems
Decking

Carbon Value Engineering: Integrated Carbon and Cost Reduction Strategies for Building Design

https://research.thinkwood.com/en/permalink/catalogue2268
Year of Publication
2019
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Author
Robati, Mehdi
Oldfield, Philip F.
Nezhad, Ali Akbar
Carmichael, David
Organization
UNSW Sydney
Multiplex Australasia
Publisher
Cooperative Research for Low Carbon Living
Year of Publication
2019
Country of Publication
Australia
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Walls
Beams
Topic
Environmental Impact
Cost
Keywords
Value Engineering
Embodied Carbon
Hybrid Life Cycle Assessment
Capital Cost
Environmentally-extended Input-Output Analysis
Language
English
Research Status
Complete
Summary
The research presents a Carbon Value Engineering framework. This is a quantitative value analysis method, which not only estimates cost but also considers the carbon impact of alternative design solutions. It is primarily concerned with reducing cost and carbon impacts of developed design projects; that is, projects where the design is already a completed to a stage where a Bill of Quantity (BoQ) is available, material quantities are known, and technical understanding of the building is developed. This research demonstrates that adopting this integrated carbon and cost method was able to reduce embodied carbon emissions by 63-267 kgCO2-e/m2 (8-36%) when maintaining a concrete frame, and 72-427 kgCO2-e/m2 (10-57%) when switching to a more novel whole timber frame. With a GFA of 43,229 m2 these savings equate to an overall reduction of embodied carbon in the order of 2,723 – 18,459 tonnes of CO2-e. Costs savings for both alternatives were in the order of $127/m2 which equates to a 10% reduction in capital cost. For comparison purposes the case study was also tested with a high-performance façade. This reduced lifecycle carbon emissions in the order of 255 kgCO2-e/m2, over 50 years, but at an additional capital cost, due to the extra materials. What this means is strategies to reduce embodied carbon even late in the design stage can provide carbon savings comparable, and even greater than, more traditional strategies to reduce operational emissions over a building’s effective life.
Online Access
Free
Resource Link
Less detail

Field Tests of Treated Thin-Lamina Glulam after Five Years of Exposure

https://research.thinkwood.com/en/permalink/catalogue370
Year of Publication
2015
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Morris, Paul
Ingram, Janet
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Serviceability
Keywords
Cedar
Decay
Preservative
ACQ
Copper Azole
Fasteners
Language
English
Research Status
Complete
Summary
Field tests of untreated and preservative-treated glulam beams in outdoor exposure, in ground contact and above ground, were inspected for decay after five years. Copper azole and ACQ-D-treated material was in excellent condition, while moderate to severe decay was present in untreated non-durable material...
Online Access
Free
Resource Link
Less detail

Fire Testing for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1828
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Beams
Columns
Organization
SWRI
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Beams
Columns
Topic
Fire
Keywords
Fire Endurance Tests
Connections
Assembly
Fabrication
Thermocouples
Beam Column Connection
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Fire Test Results Summary B. Test 1a (Test 1): Beam-Exterior Column Connection Report C. Test 1a (Test 2): Beam-Exterior Column Connection Report D. Test 1a (Test 3): Beam-Exterior Column Connection Report E. Test 1a (Test 4): Beam-Exterior Column Connection Report F. Test 1b (Test 1): CLT Deck to Beam Report G. Test 1b (Test 2): CLT Deck to Beam Report H. Test 1b (Test 3): CLT Deck to Beam Report I. Test 1c: Penetrations Fire Resistance Rating Report (TBD) J. Test 1d: Wall Fire Resistance Rating Report
Online Access
Free
Resource Link
Less detail

Investigation of a Post-Tensioned Timber Connection

https://research.thinkwood.com/en/permalink/catalogue335
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams

Literature Survey on Nail-Laminated Timber and Box Beam

https://research.thinkwood.com/en/permalink/catalogue1210
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
NLT (Nail-Laminated Timber)
Application
Beams
Author
Ni, Chun
Karacabeyli, Erol
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Beams
Topic
Design and Systems
Market and Adoption
Keywords
Box Beams
Mechanical Joints
CSA 086
Language
English
Research Status
Complete
Summary
Nail-Laminated Timber (NLT) and box beam are efficient and economical engineered wood products. Although NLT has been used in North America for more than a century, only in recent years it has gained renewed interests as they have been seen as the most economical panel products used in mass timber buildings. Box beams, on the other hand, are lightweight and generally possess higher strength and stiffness than comparable-sized solid timber and are more efficient than solid timber large spans and loads. In this report, existing design provisions and their limitations for the design and construction of NLT in box beam in Canadian standards are reviewed. For NLT, there is a general lack of information related to manufacturing, design and construction to ensure consistent manufacturing and installation practices. Therefore, it is difficult to research and document with confidence the full range of performance that can be achieved with NLT. It is therefore recommended that a North American product standard and design information on structural performance, floor vibration, fire resistance, acoustic performance, and construction risk mitigation measures (e.g. moisture and fire) be developed. In CSA 086, design methods are limited to box beams with flanges and webs bonded with glue. As the flanges and webs of a box beam can be assembled by either glue or mechanical fasteners, it is recommended that design provisions for box beam with mechanical joints be also developed. With the information in Eurocode 5 and relevant supporting research papers, it is ready to be implemented.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.