Skip header and navigation

3 records – page 1 of 1.

Comparison of the Seismic Performance of Different Hybrid Timber-Steel Frame Configurations

https://research.thinkwood.com/en/permalink/catalogue1775
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Hybrid Building Systems
Shear Walls
Author
Marin, Jose Alberto
He, Minjuan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Application
Hybrid Building Systems
Shear Walls
Topic
Seismic
Design and Systems
Keywords
Finite Element Model
Timber-Steel Hybrid
Deformation
Lateral Loading
Abaqus
Displacement
Inter-Story Drift
Diaphragm
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5401-5408
Summary
This paper presents a finite element modeling case study of three different designs of hybrid timber-steel 6-story buildings. One of the buildings is composed by steel frames and timber diaphragms while the other two cases consist of the initial design with timber shear walls added in different dispositions, one with outer walls and the other...
Online Access
Free
Resource Link
Less detail

High-Capacity Hold-Down for Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1529
Year of Publication
2016
Topic
Design and Systems
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Author
Zhang, Xiaoyue
Popovski, Marjan
Tannert, Thomas
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Wood Building Systems
Topic
Design and Systems
Seismic
Mechanical Properties
Keywords
Holz-Stahl-Komposit
Hold-Down
Seismic Load
Strength
Stiffness
Ductility
Failure Mechanisms
Quasi-Static
Monotonic Loading
Reverse Cyclic Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 725-732
Summary
The structural use of wood in North America is dominated by light wood-frame construction used in low-rise and – more recently – mid-rise residential buildings. Mass timber engineered wood products such as laminatedveneer-lumber and cross-laminated timber (CLT) panels...
Online Access
Free
Resource Link
Less detail

Structural Design, Approval, and Monitoring of a UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1252
Year of Publication
2017
Topic
Serviceability
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Author
Tannert, Thomas
Moudgil, Ermanu
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Mechanical Properties
Design and Systems
Keywords
Vertical Shrinkage
Horizontal Building Vibration
Structural Performance
Concrete Core
Brock Commons
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
In this paper, we discuss the structural design of one of the tallest timber-based hybrid buildings in the world: the 18 storey, 53 meter tall student residence on the campus of the University of British Columbia in Vancouver. The building is of hybrid construction: 17 storeys of mass wood construction on top of one storey of concrete construction. Two concrete cores...
Online Access
Payment Required
Resource Link
Less detail