Skip header and navigation

10 records – page 1 of 1.

Braced Frame System for Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2527
Year of Publication
2020
Topic
Design and Systems
Seismic
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Author
Iqbal, Asif
Organization
University of Northern British Columbia
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Frames
Topic
Design and Systems
Seismic
Keywords
Lateral Load Resisting Systems
Sustainability
Post-Tensioned
Connections
Braced Frame Model
Timber-Steel Hybrid
Language
English
Research Status
Complete
Summary
Advanced sustainable lateral load resisting systems that combine ductile and recyclable materials offer a viable solution to resist seismic load effects in environmentally responsible ways. This paper presents the seismic response of a post-tensioned timber-steel hybrid braced frame. This hybrid system combines glulam frame with steel braces to improve lateral stiffness while providing self-centreing capability under seismic loads. The proposed system is first presented. A detailed numerical model of the proposed system is then developed with emphasis on the connections and inelastic response of bracing members. Various types of braced frames including diagonal, cross and chevron configurations are numerically examined to assess the viability of the proposed concept and to confirm the efficiency of the system. A summary of initial findings is presented to demonstrate usefulness of the hybrid system. The results demonstrate that the proposed system increases overall lateral stiffness and ductility while still being able to achieve self-centring. Some additional information on connection details are provided for implementation in practical structures. The braced-frame solution is expected to widen options for lateral load resisting systems for mid-to-high-rise buildings.
Online Access
Free
Resource Link
Less detail

Comparison of the Seismic Performance of Different Hybrid Timber-Steel Frame Configurations

https://research.thinkwood.com/en/permalink/catalogue1775
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Hybrid Building Systems
Shear Walls
Author
Marin, Jose Alberto
He, Minjuan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Application
Hybrid Building Systems
Shear Walls
Topic
Seismic
Design and Systems
Keywords
Finite Element Model
Timber-Steel Hybrid
Deformation
Lateral Loading
Abaqus
Displacement
Inter-Story Drift
Diaphragm
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5401-5408
Summary
This paper presents a finite element modeling case study of three different designs of hybrid timber-steel 6-story buildings. One of the buildings is composed by steel frames and timber diaphragms while the other two cases consist of the initial design with timber shear walls added in different dispositions, one with outer walls and the other...
Online Access
Free
Resource Link
Less detail

Design and Construction of Prestressed Timber Buildings for Seismic Areas

https://research.thinkwood.com/en/permalink/catalogue1847
Year of Publication
2018
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
General Application

Development of a Spring Model for the Structural Analysis of a Double-Layered Timber Plate Structure with Through-Tenon Joints

https://research.thinkwood.com/en/permalink/catalogue2034
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)
Application
General Application
Author
Chi Nguyen, Anh
Weinand, Yves
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
General Application
Topic
Design and Systems
Mechanical Properties
Connections
Keywords
Beech
Joints
Finite Element Model
Double-Layered Timber Plate
Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Development of Steel-Wood Hybrid Systems for Buildings Under Dynamic Loads

https://research.thinkwood.com/en/permalink/catalogue845
Year of Publication
2012
Topic
Seismic
Design and Systems
Serviceability
Application
Hybrid Building Systems
Author
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
Chile
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Serviceability
Keywords
Dynamic Loads
Timber-Steel Hybrid
Strength
Language
English
Conference
International Specialty Conference on Behaviour of Steel Structures in Seismic Areas
Research Status
Complete
Notes
January 9-11, 2012, Santiago, Chile
Online Access
Free
Resource Link
Less detail

Directives and Explanatory Guide for Mass Timber Buildings of up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue1969
Year of Publication
2015
Topic
Design and Systems
Fire
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
General Application
Author
Veilleux, Lise
Gagnon, Sylvain
Dagenais, Christian
Publisher
Régie du bâtiment du Québec
Year of Publication
2015
Country of Publication
Canada
Format
Book
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Fire
Seismic
Keywords
Tall Wood
Multi-Storey
Construction
Fire Resistance Rating
Language
English
Research Status
Complete
ISBN
978-2-550-74728-4 (printed); 978-2-550-74731-4 (PDF)
Summary
This document is a translation of the “Bâtiments de construction massive en bois d’au plus 12 étages” Guide published in August 2015. In the event of discrepancies, the French version prevails.
Online Access
Free
Resource Link
Less detail

Ductility Estimation for a Novel Timber-Steel-Hybrid System with Consideration of Uncertainty

https://research.thinkwood.com/en/permalink/catalogue389
Year of Publication
2015
Topic
Design and Systems
Seismic
Connections
Application
Hybrid Building Systems

Energy Based Seismic Design of a Multi-Storey Hybrid Building: Timber-Steel Core Walls

https://research.thinkwood.com/en/permalink/catalogue1271
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems

Experimental Verification of Design Procedure for Elements from Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1353
Year of Publication
2017
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
General Application

Feasibility Study of Tall Concrete-Timber Hybrid System

https://research.thinkwood.com/en/permalink/catalogue1274
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Application
Hybrid Building Systems

10 records – page 1 of 1.