Skip header and navigation

Refine Results By

10 records – page 1 of 1.

Accommodating Movement in High-Rise Wood-Frame Building Construction

https://research.thinkwood.com/en/permalink/catalogue1875
Year of Publication
2011
Topic
Design and Systems
Connections
Material
Steel-Timber Composite
Other Materials
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
General Application
Floors
Walls

Acoustic Performance of Timber and Timber-Concrete Composite Floors

https://research.thinkwood.com/en/permalink/catalogue684
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Schluessel, Marc
Shrestha, Rijun
Crews, Keith
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Keywords
New Zealand
Australia
Building Code of Australia
Sound Insulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of lig...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Modelling of Timber Connections Under Force and Fire

https://research.thinkwood.com/en/permalink/catalogue1473
Year of Publication
2018
Topic
Connections
Fire
Seismic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Chen, Zhiyong
Ni, Chun
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Fire
Seismic
Design and Systems
Keywords
Finite Element Model
Bolted Connection
Load-Displacement Curves
Language
English
Research Status
Complete
Summary
FPInnovations carried out a survey with consultants and researchers on the use of analytical models and software packages related to the analysis and design of mass timber buildings. The responses confirmed that a lack of suitable models and related information for material properties of timber connections was creating an impediment to the design and construction of this type of buildings. Furthermore, there is currently a lack of computer models and expertise for carrying out performance-based design for wood buildings, in particular seismic and/or fire performance design. In this study, a sophisticated constitutive model for wood-based composite material under stress and temperature was developed. This constitutive model was programmed into a user-subroutine which can be added to most general-purpose finite element software. The developed model was validated with test results of a laminated veneer lumber (LVL) beam and glulam bolted connection under force and/or fire.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Structural Performance of Post-Tensioned CLT Shear Walls with Energy Dissipators

https://research.thinkwood.com/en/permalink/catalogue1472
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Author
Chen, Zhiyong
Popovski, Marjan
Symons, Paul
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Shear Walls
Topic
Design and Systems
Mechanical Properties
Seismic
Keywords
Compression Tests
Compression Strength
Energy Dissipation
Post-Tensioned
Pres-Lam
Monotonic Loading
Reverse Cyclic Loading
Language
English
Research Status
Complete
Summary
The latest developments in seismic design philosophy have been geared towards developing of so called "resilient" or "low damage" innovative structural systems that can reduce damage to the structure while offering the same or higher levels of safety to occupants. One such innovative structural system is the Pres-Lam system that is a wood-hybrid system that utilizes post-tensioned (PT) mass timber components in both rigid-frame and wall-based buildings along with various types of energy disspators. To help implement the Pres-Lam system in Canada and the US, information about the system performance made with North American engineered wood products is needed. That information can later be used to develop design guidelines for the designers for wider acceptance of the system by the design community.Several components influence the performance of the Pres-Lam systems: the load-deformation properties of the engineered wood products under compression, load-deformation and energy dissipation properties of the dissipators used, placement of the dissipators in the system, and the level of post-tensioning force. The influence of all these components on the performance of Pres-Lam wall systems under gravity and lateral loads was investigated in this research project. The research project consisted of two main parts: material tests and system tests.
Online Access
Free
Resource Link
Less detail

An Analytical, Numerical and Experimental Study of Non-Metallic Mechanical Joints for Engineered Timber Constructions

https://research.thinkwood.com/en/permalink/catalogue1606
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
General Application
Author
Bazu, Gheorghe
Mahjourian Namari, Siavash
Wehsener, Jörg
Hartig, Jens
Haller, Peer
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
General Application
Topic
Connections
Mechanical Properties
Keywords
GFRP
Densified Veneer Wood
Plates
Dowels
Load Bearing Behaviour
Analytical Model
Numerical Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2059-2068
Summary
Timber structures are strongly depending on the design of connections, which are mostly constructed from steel components. However, these joints have a number of limitations such as the tendency to be heavy, proneness to corrosion and often poor aesthetic appearances...
Online Access
Free
Resource Link
Less detail

An Equivalent Truss Method for the Analysis of Timber Diaphragms

https://research.thinkwood.com/en/permalink/catalogue112
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Floors

Assessing The Flammability of Mass Timber Components: A Review

https://research.thinkwood.com/en/permalink/catalogue87
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Author
Mehaffey, Jim
Dagenais, Christian
Organization
FPInnovations
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
National Building Code of Canada
Flame Spread
Model
Cone Calorimeter Testing
Buildings
Language
English
Research Status
Complete
Summary
In recent decades, the wood industry has developed a number of innovative mass timber products. Among others, structural composite lumber (SCL) products, such as parallel strand lumber (PSL), laminated strand lumber (LSL) and laminated veneer lumber (LVL...
Online Access
Free
Resource Link
Less detail

Bending Stiffness Increasing of Existing Pitch Pine Beams by Means of LVL Reinforcement

https://research.thinkwood.com/en/permalink/catalogue1568
Year of Publication
2016
Topic
Mechanical Properties
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Author
Soilán, Azahara
Touza, Manuel
Arriaga, Francisco
Guaita, Manuel
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Beams
Topic
Mechanical Properties
Keywords
Pine
Self-Tapping Screws
Reinforcement
Rigidity
Bending Strength
Four Point Bending Test
Modulus of Rupture
Modulus of Elasticity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1675-1681
Summary
Many buildings in Spain constructed with "pitch pine" beams are, nowadays, under rehabilitation processes. In some cases the decision on maintaining, or not, the existing timber structure is a key issue. The commercial name “pitch pine” comprises several species in the group of Southern Yellow Pines, being the “Longleaf pine”...
Online Access
Free
Resource Link
Less detail

Cathedral Hill 2: Challenges in the Design of a Tall All-Timber Building

https://research.thinkwood.com/en/permalink/catalogue1660
Year of Publication
2016
Topic
Design and Systems
Seismic
Wind
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Below, Kevin
Sarti, Francesco
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Wind
Keywords
Pres-Lam
Dynamic Behaviour
Nonlinear Time History Analysis
Wind Loading
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3633-3640
Summary
The paper presents the design and modelling of Cathedral Hill 2, a 15-storey timber building, planned for construction in Canada. The building is a 59-metre tall office-use construction with an all-timber structure where the lateral-load-resisting system consists of segmented Pres-Lam walls...
Online Access
Free
Resource Link
Less detail

The Challenges for Designers of Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1489
Year of Publication
2016
Topic
Design and Systems
Fire
Seismic
Wind
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Buchanan, Andrew
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Seismic
Wind
Keywords
Fire Safety
Seismic Load
Wind Load
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 124-133
Summary
This paper describes several major challenges facing the designers of tall timber buildings. “Tall” in this context generally means 10 storeys or more, although many of the challenges also apply to timber buildings over 4 or 6 storeys, becoming more severe as the buildings get taller...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.