Skip header and navigation

10 records – page 1 of 1.

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Acoustic Performance of Innovative Composite Wood Stud Partition Walls

https://research.thinkwood.com/en/permalink/catalogue1181
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Acoustics and Vibration
Application
Walls
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Deng, James
Wang, Xiang-Ming
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Walls
Topic
Design and Systems
Mechanical Properties
Acoustics and Vibration
Keywords
Sound Insulation
Manufacturing
Partition Walls
Steel
Language
English
Research Status
Complete
Summary
Airborne sound insulation performance of wall assemblies is a critical aspect which is directly associated with the comfort level of the occupants, which in turn affects the market acceptance. In single-family and low-rise residential buildings, the partition walls, whether loadbearing or non-loadbearing, are commonly framed with studs of solid sawn lumber of 2x4, 2x6, and 2x8. In commercial buildings and multi-storey residential buildings, the partition walls are commonly framed using light-gauge steel studs. The shortcomings of solid sawn lumber studs form the motivation for this project to develop wood studs that would address these shortcomings to promote greater wood use in partition walls. The conceptual design and fabrication work and the preliminary test results have shown that are partition-wall stud made out of composite wood material could have the same or better airborne sound insulation performance as compared to the 25 gauge steel stud. The concept is promising, with a manufacturing process and fabrication that would work and be practical.
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of The Arbora Building for Vibration and Acoustic Performances

https://research.thinkwood.com/en/permalink/catalogue1179
Year of Publication
2018
Topic
Acoustics and Vibration
Design and Systems
Application
Wood Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Wood Building Systems
Topic
Acoustics and Vibration
Design and Systems
Keywords
Sound Insulation
Tall Wood
Vibration Performance
Mid-Rise
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on vibration and sound insulation performance. The sound insulation and vibration performance may not affect building's safety, but affects occupants' comfort and proper operation of the buildings and the funciton of sensitive equipment...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: In-Situ Testing of the Brock Commons 18-Storey Building for Vibration and Acoustic performances

https://research.thinkwood.com/en/permalink/catalogue1180
Year of Publication
2018
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Acoustics and Vibration
Keywords
Non-Destructive Testing
Vibration Performance
Natural Frequencies
Damping Ratios
Sound Insulation
Ambient Vibration Testing
Apparent Sound Transmission Class
Language
English
Research Status
Complete
Summary
This report addresses serviceability issues of tall wood buildings focusing on their vibration and sound insulation performance. The sound insulation and vibration performance may not affect the building’s safety, but affects the occupants’ comfort and the proper operation of the buildings and the function of sensitive equipment...
Online Access
Free
Resource Link
Less detail

Advanced Wood-Based Solutions for Mid-Rise and High-Rise Construction: Proposed Vibration-Controlled Design Criterion for Supporting Beams

https://research.thinkwood.com/en/permalink/catalogue1178
Year of Publication
2018
Topic
Acoustics and Vibration
Mechanical Properties
Application
Floors
Author
Hu, Lin
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Application
Floors
Topic
Acoustics and Vibration
Mechanical Properties
Keywords
Floor Supporting Beam
Bending Stiffness
Language
English
Research Status
Complete
Summary
For wood floor systems, their vibration performance is significantly dependent on the conditions of their supports, specifically the rigidity of the support. Detrimental effects could result if the floor supports do not have sufficient rigidity. This is special ture for floor supporting beams. The problem of vibrating floor due to flexible...
Online Access
Free
Resource Link
Less detail

Design Guide for Timber-Concrete Composite Floors in Canada

https://research.thinkwood.com/en/permalink/catalogue2460
Year of Publication
2020
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Material
Timber-Concrete Composite
Application
Floors
Organization
FPInnovations
Year of Publication
2020
Country of Publication
Canada
Format
Report
Material
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Acoustics and Vibration
Fire
Keywords
Shear Connection
Ultimate Limit States
Vibration
Fire Resistance
Language
English
Research Status
Complete
Summary
As part of its research work on wood buildings, FPInnovations has recently launched a Design Guide for Timber-Concrete Composite Floors in Canada. This technique, far from being new, could prove to be a cost-competitive solution for floors with longer-span since the mechanical properties of the two materials act in complementarity. Timber-concrete systems consist of two distinct layers, a timber layer and a concrete layer (on top), joined together by shear connectors. The properties of both materials are then better exploited since tension forces from bending are mainly resisted by the timber, while compression forces from bending are resisted by the concrete. This guide, which contains numerous illustrations and formulas to help users better plan their projects, addresses many aspects of the design of timber-concrete composite floors, for example shear connection systems, ultimate limit state design, vibration and fire resistance of floors, and much more.
Online Access
Free
Resource Link
Less detail

Evaluation of Prototype Wood-Based Interior Partition Walls

https://research.thinkwood.com/en/permalink/catalogue1186
Year of Publication
2018
Topic
General Information
Acoustics and Vibration
Material
Light Frame (Lumber+Panels)
Application
Walls
Author
Knudson, Robert
Schneider, Johannes
Thomas, Tony
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Walls
Topic
General Information
Acoustics and Vibration
Keywords
Interior Partition Walls
Fabrication
Installation
Acoustic Properties
Combustion Properties
Language
English
Research Status
Complete
Summary
Interior partition walls for non-residential and high-rise residential construction are an US$8 billion market opportunity in Canada and the United States (Crespell and Poon, 2014). They represent 1.6 billion ft² (150 million m²) of wall area where wood currently has less than 10%...
Online Access
Free
Resource Link
Less detail

Evolution of the Building Envelope in Modern Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1799
Year of Publication
2017
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
LVL (Laminated Veneer Lumber)
Application
Building Envelope
Topic
Design and Systems
Energy Performance
Moisture
Site Construction Management
Keywords
Energy Efficiency
Building Envelope
Tall Wood
Wood Infill Walls
Podium Structures
Articulated Buildings
Language
English
Research Status
Complete
Summary
This report provides an overview of major changes occurred in the recent decade to design and construction of the building envelope of wood and wood-hybrid construction. It also covers some new or unique considerations required to improve building envelope performance, due to evolutions of structural systems, architectural design, energy efficiency requirements, or use of new materials. It primarily aims to help practicioners better understand wood-based building envelope systems to improve design and construction practices. The information provided should also be useful to the wood industry to better understand the demands for wood products in the market place. Gaps in research are identified and summarized at the end of this report.
Online Access
Free
Resource Link
Less detail

Field Measurement of Vertical Movement and Roof Moisture Performance of the Wood Innovation and Design Centre

https://research.thinkwood.com/en/permalink/catalogue1182
Year of Publication
2018
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Author
Wang, Jieying
Organization
FPInnovations
Year of Publication
2018
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
Roofs
Topic
Serviceability
Moisture
Keywords
Vertical Movement
Moisture Content
Temperature
Relative Humidity
Monitoring
Language
English
Research Status
Complete
Summary
Two of the major topics of interest to those designing taller and larger wood buildings are the susceptibility to differential movement and the likelihood of mass timber components drying too slowly after they become wet during construction. The Wood Innovation and Design Centre in Prince George, British Columbia provides a unique opportunity for non-destructive...
Online Access
Free
Resource Link
Less detail

Guide for On-site Moisture Management of Wood Construction

https://research.thinkwood.com/en/permalink/catalogue1968
Year of Publication
2016
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
General Application
Author
Wang, Jieying
Organization
FPInnovations
Publisher
BC Housing Research Centre
Year of Publication
2016
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
PSL (Parallel Strand Lumber)
OSL (Oriented Strand Lumber)
NLT (Nail-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Floors
Wood Building Systems
General Application
Topic
Moisture
Keywords
Moisture Management
Construction
Risk Mitigation
Prefabrication
Multi-Storey
Language
English
Research Status
Complete
Summary
Overall moisture management during construction has become increasingly important due to the increase in building height and area, which potentially prolongs the exposure to inclement weather, and the overall increase in speed of construction, which may not allow adequate time for drying to occur. This report provides guidelines and relevant information about on-site moisture management practices that can be adapted to suit a range of wood construction projects...
Online Access
Free
Resource Link
Less detail

In-Situ Testing at Wood Innovation and Design Centre: Floor Vibration, Building Vibration, and Sound Insulation Performance

https://research.thinkwood.com/en/permalink/catalogue284
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Hu, Lin
Pirvu, Ciprian
Ramzi, Redouane
Organization
FPInnovations
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Acoustics and Vibration
Keywords
Natural Frequency
Damping Ratio
Static Deflection Testing
Vibration Performance
Sound Transmission
Language
English
Research Status
Complete
Summary
In order to address the lack of measured natural frequencies and damping ratios for wood and hybrid wood buildings, and lack of knowledge of vibration performance of innovative CLT floors and sound insulation performance of CLT walls and floors, FPInnovations conducted...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.