Skip header and navigation

7 records – page 1 of 1.

An Algorithm for Numerical Modelling of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2362
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
D'Aronco, Gabriele
Publisher
Università di Padova
Year of Publication
2015
Country of Publication
Italy
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Connections
Panels
Model
Language
English
Research Status
Complete
Summary
Cross-laminated timber, also known as X-Lam or CLT, is well established in Europe as a construction material. Recently, implementation of X-Lam products and systems has begun in countries such as Canada, United States, Australia and New Zealand. So far, no relevant design codes for X-Lam construction were published in Europe, therefore an extensive research on the field of cross-laminated timber is being performed by research groups in Europe and overseas. Experimental test results are required for development of design methods and for verification of design models accuracy. This thesis is part of a large research project on the development of a software for the modelling of CLT structures, including analysis, calculation, design and verification of connections and panels. It was born as collaboration between Padua University and Barcelona"s CIMNE (International Centre for Numerical Methods in Engineering). The research project started with the thesis “Una procedura numerica per il progetto di edifici in Xlam” by Massimiliano Zecchetto, which develops a software, using MATLAB interface, only for 2D linear elastic analysis. Follows the phase started in March 2015, consisting in extending the 2D software to a 3D one, with the severity caused by modelling in three dimensions. This phase is developed as a common project and described in this thesis and in “Pre-process for numerical analysis of Cross Laminated Timber Structures” by Alessandra Ferrandino. The final aim of the software is to enable the modelling of an X-Lam structure in the most efficient and reliable way, taking into account its peculiarities. Modelling of CLT buildings lies into properly model the connections between panels. Through the connections modelling, the final aim is to enable the check of preliminarily designed connections or to find them iteratively, starting from hypothetical or random connections. This common project develops the pre-process and analysis phases of the 3D software that allows the automatic modelling of connections between X-Lam panels. To achieve the goal, a new problem type for GiD interface and a new application for KRATOS framework have been performed. The problem type enables the user to model a CLT structure, starting from the creation of the geometry and the assignation of numeric entities (beam, shell, etc.) to geometric ones, having defined the material, and assigning loads and boundary conditions. The user does not need to create manually the connections, as conversely needs for all commercial FEM software currently available; he just set the connection properties to the different sides of the panels. The creation of the connections is made automatically, keeping into account different typologies of connections and assembling of Cross-Lam panels. The problem type is special for XLam structures, meaning that all features are intentionally studied for this kind of structures and the software architecture is planned for future developments of the postprocess phase. It can be concluded that sound bases for the pre-process and analysis phases of the software have been laid. However, future research is required to develop the postprocess and verification phases of the research project.
Online Access
Free
Resource Link
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High Rise Project

https://research.thinkwood.com/en/permalink/catalogue1671
Year of Publication
2016
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Breneman, Scott
McDonnell, Eric
Zimmerman, Reid
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Seismic
Design and Systems
Keywords
US
Diaphragm
Model
High-Rise
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3844-3852
Summary
A candidate CLT diaphragm analysis model approach is presented and evaluated as an engineering design tool motivated by the needs of seismic design in the United States. The modeling approach consists of explicitly modeling CLT panels as discrete orthotropic shell elements with connections between panels and connections from panels to...
Online Access
Free
Resource Link
Less detail

An Approach to CLT Diaphragm Modeling for Seismic Design with Application to a U.S. High-Rise Project

https://research.thinkwood.com/en/permalink/catalogue1710
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Floors

Lateral Behaviour and Direct Displacement Based Design of a Novel Hybrid Structure: Cross Laminated Timber Infilled Steel Moment Resisting Frames

https://research.thinkwood.com/en/permalink/catalogue175
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Frames

Prototype Mass Timber Office Building Models: Material Quantities and Preliminary Life Cycle Assessment: Internal Report

https://research.thinkwood.com/en/permalink/catalogue2547
Year of Publication
2018
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Ganguly, Indroneil
Eastin, Ivan
Simonen, Kathrina
Year of Publication
2018
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Design and Systems
Environmental Impact
Keywords
Mid-Rise
Mass Timber
Prototype
Model
LCA
Life-Cycle Assessment
Language
English
Research Status
Complete
Summary
The goal of this work was to develop material quantity estimates of a typical mid-rise office building in the Pacific Northwest and to deliver the results to the Forestry Research Team in the University of Washington (UW) College of the Environment School of Environmental and Forest Sciences. The Forestry Research Team will then use these results to develop regionally specific life cycle inventory data to support the greater study funded by the 2015 McIntire-Stennis Research Grant, which is “to assist small and medium-sized wood products companies and Native American tribal enterprises to understand and adapt to changing market conditions” (http://depts.washington.edu/sefsifr/2015-mcintire-stennis-grantwinners/).
Online Access
Free
Resource Link
Less detail

Simple Cross-Laminated Timber Shear Connections with Spatially Arranged Screws

https://research.thinkwood.com/en/permalink/catalogue1716
Year of Publication
2018
Topic
Connections
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
General Application

Structural Fire Design of Tall Timber Buildings Using Cross Laminated Timber (CLT) to Eurocodes

https://research.thinkwood.com/en/permalink/catalogue1779
Year of Publication
2016
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Zhang, Binsheng
Zhao, Xuan
Sandersaon, Iain
Kilpatrick, Tony
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Fire
Keywords
Fire Safety
Model
Numerical Simulation
Eurocode
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5445-5454
Summary
The development and renaissance of modern engineered products, advanced connections and modern construction technology have made it viable to design and construct multi-storey timber buildings. However, a number of issues need to be raised urgently, in particular fire safety and secondary structural effects. This research aims to...
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.