Skip header and navigation

6 records – page 1 of 1.

An Algorithm for Numerical Modelling of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2362
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
D'Aronco, Gabriele
Publisher
Università di Padova
Year of Publication
2015
Country of Publication
Italy
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Connections
Panels
Model
Language
English
Research Status
Complete
Summary
Cross-laminated timber, also known as X-Lam or CLT, is well established in Europe as a construction material. Recently, implementation of X-Lam products and systems has begun in countries such as Canada, United States, Australia and New Zealand. So far, no relevant design codes for X-Lam construction were published in Europe, therefore an extensive research on the field of cross-laminated timber is being performed by research groups in Europe and overseas. Experimental test results are required for development of design methods and for verification of design models accuracy. This thesis is part of a large research project on the development of a software for the modelling of CLT structures, including analysis, calculation, design and verification of connections and panels. It was born as collaboration between Padua University and Barcelona"s CIMNE (International Centre for Numerical Methods in Engineering). The research project started with the thesis “Una procedura numerica per il progetto di edifici in Xlam” by Massimiliano Zecchetto, which develops a software, using MATLAB interface, only for 2D linear elastic analysis. Follows the phase started in March 2015, consisting in extending the 2D software to a 3D one, with the severity caused by modelling in three dimensions. This phase is developed as a common project and described in this thesis and in “Pre-process for numerical analysis of Cross Laminated Timber Structures” by Alessandra Ferrandino. The final aim of the software is to enable the modelling of an X-Lam structure in the most efficient and reliable way, taking into account its peculiarities. Modelling of CLT buildings lies into properly model the connections between panels. Through the connections modelling, the final aim is to enable the check of preliminarily designed connections or to find them iteratively, starting from hypothetical or random connections. This common project develops the pre-process and analysis phases of the 3D software that allows the automatic modelling of connections between X-Lam panels. To achieve the goal, a new problem type for GiD interface and a new application for KRATOS framework have been performed. The problem type enables the user to model a CLT structure, starting from the creation of the geometry and the assignation of numeric entities (beam, shell, etc.) to geometric ones, having defined the material, and assigning loads and boundary conditions. The user does not need to create manually the connections, as conversely needs for all commercial FEM software currently available; he just set the connection properties to the different sides of the panels. The creation of the connections is made automatically, keeping into account different typologies of connections and assembling of Cross-Lam panels. The problem type is special for XLam structures, meaning that all features are intentionally studied for this kind of structures and the software architecture is planned for future developments of the postprocess phase. It can be concluded that sound bases for the pre-process and analysis phases of the software have been laid. However, future research is required to develop the postprocess and verification phases of the research project.
Online Access
Free
Resource Link
Less detail

Deflection of CLT Shear Walls in Platform Construction

https://research.thinkwood.com/en/permalink/catalogue1974
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems

Displacement-Based Seismic Design of Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1891
Year of Publication
2011
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Other Materials
Application
Wood Building Systems
Walls
Floors
Beams
Columns
Frames

Hybrid CLT-Based Modular Construction Systems for Prefabricated Buildings

https://research.thinkwood.com/en/permalink/catalogue1901
Year of Publication
2018
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Steel-Timber Composite
Application
Wood Building Systems
Floors
Walls

In-Plane Strength and Stiffness of Cross-Laminated Timber Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2117
Year of Publication
2018
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Floors

Seismic Design of Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1971
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Author
Tannert, Thomas
Follesa, Maurizio
Fragiacomo, Massimo
González Soto, Paulina
Isoda, Hiroshi
Moroder, Daniel
Xiong, Haibei
van de Lindt, John
Publisher
Society of Wood Science and Technology
Year of Publication
2018
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
General Application
Topic
Seismic
Design and Systems
Keywords
Seismicity
Design Standards
Platform-Type Construction
Ductility
Connections
Language
English
Research Status
Complete
Series
Wood and Fiber Science
Summary
The increasing interest in cross-laminated timber (CLT) construction has resulted in multiple international research projects and publications covering the manufacturing and performance of CLT. Multiple regions and countries have adopted provisions for CLT into their engineering design standards and building regulations. Designing and building CLT structures, also in earthquake-prone regions is no longer a domain for early adopters, but is becoming a part of regular timber engineering practice...
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.