Skip header and navigation

10 records – page 1 of 1.

Comparison of the Seismic Performance of Different Hybrid Timber-Steel Frame Configurations

https://research.thinkwood.com/en/permalink/catalogue1775
Year of Publication
2016
Topic
Seismic
Design and Systems
Application
Hybrid Building Systems
Shear Walls
Author
Marin, Jose Alberto
He, Minjuan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Application
Hybrid Building Systems
Shear Walls
Topic
Seismic
Design and Systems
Keywords
Finite Element Model
Timber-Steel Hybrid
Deformation
Lateral Loading
Abaqus
Displacement
Inter-Story Drift
Diaphragm
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5401-5408
Summary
This paper presents a finite element modeling case study of three different designs of hybrid timber-steel 6-story buildings. One of the buildings is composed by steel frames and timber diaphragms while the other two cases consist of the initial design with timber shear walls added in different dispositions, one with outer walls and the other...
Online Access
Free
Resource Link
Less detail

Design and Construction of Prestressed Timber Buildings for Seismic Areas

https://research.thinkwood.com/en/permalink/catalogue1847
Year of Publication
2018
Topic
Design and Systems
Material
LVL (Laminated Veneer Lumber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
General Application

Design Options for Three- and Four-Storey Wood School Buildings in British Columbia

https://research.thinkwood.com/en/permalink/catalogue2373
Year of Publication
2019
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Timber (unspecified)
Application
Wood Building Systems
General Application
Author
Bevilacqua, Nick
Dickof, Carla
Wolfe, Ray
Gan, Wei-Jie
Embury-Williams, Lynn
Organization
Fast + Epp
Wood Works! BC
Thinkspace
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
NLT (Nail-Laminated Timber)
DLT (Dowel Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Timber (unspecified)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Keywords
Construction
Education
School Buildings
Mass Timber
Multi-Storey
Building Code
Fire Protection
Language
English
Research Status
Complete
Summary
This study illustrates the range of possible wood construction approaches for school buildings that are up to four storeys in height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This study is closely related to the report Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction prepared by GHL Consultants, which explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys, while also imposing limits on the overall floor area. As such, the reader is referred to the GHL report for further information regarding building code compliance (with a particular emphasis on fire protection) for wood school buildings.
Online Access
Free
Resource Link
Less detail

Development of a Spring Model for the Structural Analysis of a Double-Layered Timber Plate Structure with Through-Tenon Joints

https://research.thinkwood.com/en/permalink/catalogue2034
Year of Publication
2018
Topic
Design and Systems
Mechanical Properties
Connections
Material
LVL (Laminated Veneer Lumber)
Application
General Application
Author
Chi Nguyen, Anh
Weinand, Yves
Year of Publication
2018
Country of Publication
South Korea
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
General Application
Topic
Design and Systems
Mechanical Properties
Connections
Keywords
Beech
Joints
Finite Element Model
Double-Layered Timber Plate
Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Online Access
Free
Resource Link
Less detail

Directives and Explanatory Guide for Mass Timber Buildings of up to 12 Storeys

https://research.thinkwood.com/en/permalink/catalogue1969
Year of Publication
2015
Topic
Design and Systems
Fire
Seismic
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
General Application
Author
Veilleux, Lise
Gagnon, Sylvain
Dagenais, Christian
Publisher
Régie du bâtiment du Québec
Year of Publication
2015
Country of Publication
Canada
Format
Book
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
OSL (Oriented Strand Lumber)
PSL (Parallel Strand Lumber)
Application
Wood Building Systems
General Application
Topic
Design and Systems
Fire
Seismic
Keywords
Tall Wood
Multi-Storey
Construction
Fire Resistance Rating
Language
English
Research Status
Complete
ISBN
978-2-550-74728-4 (printed); 978-2-550-74731-4 (PDF)
Summary
This document is a translation of the “Bâtiments de construction massive en bois d’au plus 12 étages” Guide published in August 2015. In the event of discrepancies, the French version prevails.
Online Access
Free
Resource Link
Less detail

Ductility Estimation for a Novel Timber-Steel-Hybrid System with Consideration of Uncertainty

https://research.thinkwood.com/en/permalink/catalogue389
Year of Publication
2015
Topic
Design and Systems
Seismic
Connections
Application
Hybrid Building Systems

Experimental Verification of Design Procedure for Elements from Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1353
Year of Publication
2017
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
General Application

Feasibility Study of Tall Concrete-Timber Hybrid System

https://research.thinkwood.com/en/permalink/catalogue1274
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Application
Hybrid Building Systems

Lateral Load-Resisting System Using Mass Timber Panel for High-Rise Buildings

https://research.thinkwood.com/en/permalink/catalogue1221
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Material
LSL (Laminated Strand Lumber)
Application
Shear Walls
Hybrid Building Systems

Risk Analysis and Alternative Solution for Three- and Four-Storey Schools of Mass Timber and/or Wood-Frame Construction

https://research.thinkwood.com/en/permalink/catalogue2374
Year of Publication
2019
Topic
Design and Systems
Market and Adoption
Fire
Material
Timber (unspecified)
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
General Application
Organization
GHL Consultants Ltd.
Year of Publication
2019
Country of Publication
Canada
Format
Report
Material
Timber (unspecified)
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Other Materials
Application
Wood Building Systems
General Application
Topic
Design and Systems
Market and Adoption
Fire
Keywords
Building Code
Education
School Buildings
Multi-Storey
Fire Test
Fire Safety
Technical Risk
Process Risk
Mass Timber
Language
English
Research Status
Complete
Summary
This report explores the building code related considerations of wood construction for school buildings that are up to four storeys in height. Though wood construction offers a viable structural material option for these buildings, the British Columbia Building Code (BCBC 2018) currently limits schools comprised of wood construction to a maximum of two storeys. Three- and four-storey schools and larger floor areas in wood construction require an Alternative Solution. The report identifies key fire safety features offered by combustible construction materials including tested and currently widely available engineered mass timber products, such as glued-laminated timber and cross-laminated timber. A risk analysis identifies the risk areas defined by the objectives of the British Columbia Building Code (BCBC 2018) and evaluates the level of performance of the Building Code solutions for assembly occupancies vis-à-vis the level of performance offered by the proposed schools up to four storeys in building height. As land values continue to rise, particularly in higher-density urban environments, schools with smaller footprints will become increasingly more necessary to satisfy enrollment demands. There are currently a number of planned new school projects throughout British Columbia that anticipate requiring either three-or four-storey buildings, and it is forecasted that the demand for school buildings of this size will continue to rise. This report is closely related to the study Design Options for Three-and Four-Storey Wood School Buildings in British Columbia, which illustrates the range of possible timber construction approaches for school buildings that are up to four storeys in height.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.