Skip header and navigation

10 records – page 1 of 1.

Behaviour of Cross-Laminated Timber Panels Under Cyclic Loads

https://research.thinkwood.com/en/permalink/catalogue661
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gavric, Igor
Fragiacomo, Massimo
Popovski, Marjan
Ceccotti, Ario
Publisher
Springer, Dordrecht
Year of Publication
2014
Country of Publication
Netherlands
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Cyclic Loads
Failure Mechanisms
Energy Dissipation
seismic behaviour
Language
English
Research Status
Complete
Series
Materials and Joints in Timber Structures
ISBN
978-94-007-7811-5
Online Access
Payment Required
Resource Link
Less detail

Capacity-Based Design for Cross-Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1255
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Shahnewaz, Md
Tannert, Thomas
Alam, Shahria
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Mechanical Properties
Connections
Keywords
In-Plane Stiffness
Strength
Non-Linear Springs
Finite Element Analysis
Hysteretic Behaviour
Cyclic Loading
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
The use of cross-laminated timber (CLT) in residential and non-residential buildings is becoming increasingly popular in North America. While the 2016 supplement to the 2014 edition of the Canadian Standard for Engineering Design in Wood, CSAO86, provides provisions for CLT structures used in platform type applications, it does not provide guidance for the in-plane...
Online Access
Payment Required
Resource Link
Less detail

Cross-Laminated Timber for Seismic Regions: Progress and Challenges for Research and Implementation

https://research.thinkwood.com/en/permalink/catalogue162
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls

Damage Assessment of Connections used in Cross-Laminated Timber Subject to Cyclic Loads

https://research.thinkwood.com/en/permalink/catalogue225
Year of Publication
2014
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Karacabeyli, Erol
Popovski, Marjan
Stiemer, Siegfried
Tesfamariam, Solomon
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Fasteners
Damage Index (DI) Method
Brackets
Load Displacement
Hysteretic
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Notes
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000528
Summary
Cross-laminated timber (CLT) products are gaining popularity in the North American market and are being used in midrise wood buildings, in particular, in shearwall applications. Shearwalls provide resistance to lateral loads such as wind and earthquake loads, and therefore it is important to gain a better understanding of the behavior of CLT shearwall systems during earthquake events. This paper is focused on the seismic performance of connections between CLT shearwall panels and the foundation. CLT panels are very stiff and energy dissipation is accomplished by the connections. A literature review on previous research work related to damage prediction and assessment for wood frame structures was performed. Furthermore, a test program was conducted to investigate the performance of CLT connections subjected to simulated earthquake loads. Two different brackets in combination with five types of fasteners were tested under monotonic and cyclic loading protocols. In total, 98 connection tests were conducted and the monotonic load-displacement curves and hysteretic loops were obtained. In this paper, an energy-based cumulative damage assessment model was calibrated with the CLT connection test data. Finally, a correlation between the damage index and physical damage is provided.
Online Access
Free
Resource Link
Less detail

Damage Assessment of Cross Laminated Timber Connections Subjected to Simulated Earthquake Loads

https://research.thinkwood.com/en/permalink/catalogue70
Year of Publication
2012
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Damage
Panels
North American Market
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
Wood-frame is the most common construction type for residential buildings in North America. However, there is a limit to the height of the building using a traditional wood-frame structure. Cross-laminated timber (CLT) provides possible solutions to mid-...
Online Access
Free
Resource Link
Less detail

Design Method for Controlling Vibrations of Wood-Concrete Composite Floors Systems

https://research.thinkwood.com/en/permalink/catalogue1689
Year of Publication
2016
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Floors
Author
Hu, Lin
Cuerrier-Auclair, Samuel
Chui, Ying Hei
Ramzi, Redouane
Gagnon, Sylvain
Mohammad, Mohammad
Ni, Chun
Popovski, Marjan
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Timber-Concrete Composite
Application
Floors
Topic
Acoustics and Vibration
Design and Systems
Mechanical Properties
Keywords
Natural Frequencies
Deflection
Bending Stiffness
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4237-4245
Summary
Wood-concrete composite slab floors provide a promising solution for achieving long spans and shallow wood-based floor systems for large and tall wood buildings. In comparison with conventional wood floor systems, such long span and heavy floors have a lower fundamental natural frequency...
Online Access
Free
Resource Link
Less detail

Developing Seismic Performance Factors for Cross Laminated Timber in the United States

https://research.thinkwood.com/en/permalink/catalogue124
Year of Publication
2015
Topic
Seismic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
van de Lindt, John
Amini, M. Omar
Rammer, Douglas
Line, Philip
Pei, Shiling
Popovski, Marjan
Organization
Canadian Association for Earthquake Engineering
Year of Publication
2015
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Mechanical Properties
Connections
Keywords
Angle Bracket
Shear Test
Strength
Stiffness
Uplift Test
US
Language
English
Conference
The 11th Canadian Conference on Earthquake Engineering
Research Status
Complete
Notes
July 21-24, 2015, Victoria, BC, Canada
Online Access
Free
Resource Link
Less detail

Direct Displacement Based Design of A Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross Laminated Timber Infill Walls

https://research.thinkwood.com/en/permalink/catalogue15
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Ductility Based Force Reduction Factors for Symmetrical Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue446
Year of Publication
2014
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Author
Popovski, Marjan
Pei, Shiling
van de Lindt, John
Karacabeyli, Erol
Organization
European Association of Earthquake Engineering
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Topic
Mechanical Properties
Seismic
Keywords
Force Modification Factors
Ductility
National Building Code of Canada
Fasteners
Seismic Performance
Language
English
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Online Access
Free
Resource Link
Less detail

Force Based Design Guideline for Timber-Steel Hybrid Structures: Steel Moment Resisting Frames with CLT Infill Walls

https://research.thinkwood.com/en/permalink/catalogue83
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Tesfamariam, Solomon
Stiemer, Siegfried
Bezabeh, Matiyas
Goertz, Caleb
Popovski, Marjan
Goda, Katsuichiro
Organization
University of British Columbia
Year of Publication
2015
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Overstrength
Ductility
National Building Code of Canada
Timber-Steel Hybrid
Office Buildings
Residential Buildings
Language
English
Research Status
Complete
Summary
Provincial code changes have been made to allow construction of light wood-frame buildings up to 6 storeys in order to satisfy the urban housing demand in western Canadian cities. It started in 2009 when the BC Building Code was amended to increase the height limit for wood-frame structures from four to six. Recently, provinces of Quebec, Ontario and Alberta followed suit. While wood-frame construction is limited to six storeys, some innovative wood-hybrid systems can go to greater heights. In this report, a feasibility study of timber-based hybrid buildings is described as carried out by The University of British Columbia (UBC) in collaboration with FPInnovations. This project, funded through BC Forestry Innovation Investment's (FII) Wood First Program, had an objective to develop design guidelines for a new steel-timber hybrid structural system that can be used as part of the next generation "steel-timber hybrid structures" that is limited in scope to 20 storey office or residential buildings. ...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.